Maximum cuts in edge-colored graphs

被引:4
作者
Faria, Luerbio [1 ]
Klein, Sulamita [2 ]
Sau, Ignasi [3 ,4 ]
Souza, Ueverton S. [5 ]
Sucupira, Rubens [1 ,2 ]
机构
[1] Univ Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, IM, Rio De Janeiro, Brazil
[3] Univ Montpellier, LIRMM, CNRS, Montpellier, France
[4] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
[5] Univ Fed Fluminense, IC, Niteroi, RJ, Brazil
关键词
Colored cut; Edge cut; Maximum cut; Planar graph; Parameterized complexity; Polynomial kernel; S-T CUT; LABEL; ALGORITHMS; COMPLEXITY;
D O I
10.1016/j.dam.2019.02.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The input of the Maximum Colored Cut problem consists of a graph G = (V, E) with an edge-coloring c : E -> {1, 2, 3,..., p} and a positive integer k, and the question is whether G has a nontrivial edge cut using at least k colors. The Colorful Cut problem has the same input but asks for a nontrivial edge cut using all p colors. Unlike what happens for the classical Maximum Cut problem, we prove that both problems are NP-complete even on complete, planar, or bounded treewidth graphs. Furthermore, we prove that Colorful Cut is NP-complete even when each color class induces a clique of size at most three, but is trivially solvable when each color induces an edge. On the positive side, we prove that Maximum Colored Cut is fixed-parameter tractable when parameterized by either k or p, by constructing a cubic kernel in both cases. (c) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2010, GRAPH THEORY
[2]   Complexity insights of the MINIMUM DUPLICATION problem [J].
Blin, Guillaume ;
Bonizzoni, Paola ;
Dondi, Riccardo ;
Rizzi, Romeo ;
Sikora, Florian .
THEORETICAL COMPUTER SCIENCE, 2014, 530 :66-79
[3]  
Bodlaender H. L., 2000, Nordic Journal of Computing, V7, P14
[4]   A partial k-arboretum of graphs with bounded treewidth [J].
Bodlaender, HL .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :1-45
[5]  
Broersma H., 1997, DISCUSS MATH GRAPH T, V17, P259
[6]  
Carr RD, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P345
[7]   SHARED RISK RESOURCE GROUP COMPLEXITY AND APPROXIMABILITY ISSUES [J].
Coudert, D. ;
Datta, P. ;
Perennes, S. ;
Rivano, H. ;
Voge, M. -E. .
PARALLEL PROCESSING LETTERS, 2007, 17 (02) :169-184
[8]  
Coudert D, 2016, DISCRETE MATH THEOR, V18
[9]  
Cygan M., 2015, Parameterized algorithms, V5, DOI DOI 10.1007/978-3-319-21275-3
[10]   ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (02) :113-&