Progressively Trained Convolutional Neural Networks for Deformable Image Registration

被引:48
作者
Eppenhof, Koen A. J. [1 ]
Lafarge, Maxime W. [1 ]
Veta, Mitko [1 ]
Pluim, Josien P. W. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Med Ctr Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
关键词
Deformable image registration; progressive training; convolutional neural networks; machine learning; lung registration; INFORMATION; FRAMEWORK; MOTION;
D O I
10.1109/TMI.2019.2953788
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based methods for deformable image registration are attractive alternatives to conventional registration methods because of their short registration times. However, these methods often fail to estimate larger displacements in complex deformation fields, for which a multi-resolution strategy is required. In this article, we propose to train neural networks progressively to address this problem. Instead of training a large convolutional neural network on the registration task all at once, we initially train smaller versions of the network on lower resolution versions of the images and deformation fields. During training, we progressively expand the network with additional layers that are trained on higher resolution data. We show that this way of training allows a network to learn larger displacements without sacrificing registration accuracy and that the resulting network is less sensitive to large misregistrations compared to training the full network all at once. We generate a large number of ground truth example data by applying random synthetic transformations to a training set of images, and test the network on the problem of intrapatient lung CT registration. We analyze the learned representations in the progressively growing network to assess how the progressive learning strategy influences training. Finally, we show that a progressive training procedure leads to improved registration accuracy when learning large and complex deformations.
引用
收藏
页码:1594 / 1604
页数:11
相关论文
共 42 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 2010, JMLR WORKSH C P
[4]  
[Anonymous], 2013, PROC 30 INT C MACH L
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[7]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[8]   Registration of organs with sliding interfaces and changing topologies [J].
Berendsen, Floris F. ;
Kotte, Alexis N. T. J. ;
Viergever, Max A. ;
Pluim, Josien P. W. .
MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
[9]   Deformable Image Registration Using a Cue-Aware Deep Regression Network [J].
Cao, Xiaohuan ;
Yang, Jianhua ;
Zhang, Jun ;
Wang, Qian ;
Yap, Pew-Thian ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (09) :1900-1911
[10]  
Cao Xiaohuan, 2017, Med Image Comput Comput Assist Interv, V10433, P300, DOI 10.1007/978-3-319-66182-7_35