High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature

被引:34
|
作者
Zheng, Qinwen [1 ,2 ]
Li, Xiangming [1 ]
Yang, Qingzhen [3 ]
Li, Congming [1 ]
Liu, Gangqiang [1 ]
Wang, Yingche [4 ]
Sun, Pengcheng [5 ,6 ]
Tian, Hongmiao [1 ]
Wang, Chunhui [1 ]
Chen, Xiaoliang [1 ]
Shao, Jinyou [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Micro Nanotechnol Res Ctr, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[4] Xian Inst Electromech Informat Technol, Xian 710065, Shaanxi, Peoples R China
[5] Univ Illinois, Dept Mat Sci & Engn, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
Organogel electrolyte; Solid-state supercapacitors; Low temperature; High ionic conductivity; Wide voltage window; GEL POLYMER ELECTROLYTE; GRAPHENE-BASED SUPERCAPACITORS; DOUBLE-LAYER CAPACITOR; SPIRO-(1,1')-BIPYRROLIDINIUM TETRAFLUOROBORATE; ENERGY-STORAGE; MIXTURES; DENSITY; NANOCOMPOSITE; ACETONITRILE; SOLVENTS;
D O I
10.1016/j.jpowsour.2022.231102
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state supercapacitors have advantages of leakage free and flexibility but usually have low energy density at low temperature. This is largely due to the significantly declined ionic conductivity as well as the relatively low voltage window of the gel electrolytes. Here we designed a low temperature tolerant organogel electrolyte by systematically tuning the solvents' ionic conductivity, melting point and electrochemical stability via acetonitrile (AN), methyl formate (MF), and propylene carbonate (PC), respectively. The tuned gel electrolyte of polymer metrix of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with salt of ionic electrolyte 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) exhibited ionic conductivity of 2.95 mS cm(-1), mechanical strain rate of 350% and voltage window of 0-4 V at low temperature of-60 C. The stack cell of solid-state supercapacitor using activated carbon as electrode films exhibited capacitance retention of 98.5% at-60 C compared with that under room temperature, a 3.9% capacitance attenuation after 10,000 charge/discharge cycles, and exceptional stack energy density of 30.8 Wh kg(-1), at least three times higher than the state-of-the-art solid-state supercapacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals
    Peng, Shaomin
    Yu, Lin
    Lan, Bang
    Sun, Ming
    Cheng, Gao
    Liao, Shuhuan
    Cao, Han
    Deng, Yulin
    NANOTECHNOLOGY, 2016, 27 (50)
  • [32] Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance
    Wang, Kai
    Zhang, Xiong
    Li, Chen
    Zhang, Haitao
    Sun, Xianzhong
    Xu, Nansheng
    Ma, Yanwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (46) : 19726 - 19732
  • [33] Highly Conductive Polymeric Ionic Liquid Electrolytes for Ambient-Temperature Solid-State Lithium Batteries
    Zhang, Fengrui
    Sun, Yiyang
    Wang, Zhicheng
    Fu, Daosong
    Li, Jing
    Hu, Jianchen
    Xu, Jingjing
    Wu, Xiaodong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (21) : 23774 - 23780
  • [34] Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures
    Kwon, Taeyoung
    Choi, Ilyoung
    Park, Moon Jeong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) : 24250 - 24258
  • [35] Quasi-solid-state gel polymer electrolyte for a wide temperature range application of acetonitrile-based supercapacitors
    Yong, Hansol
    Park, Habin
    Jung, Cheolsoo
    JOURNAL OF POWER SOURCES, 2020, 447
  • [36] Solid-state transformation of aqueous to organic electrolyte - Enhancing the operating voltage window of 'in situ electrolyte' supercapacitors
    Leistenschneider, Desiree
    Hess, Lars Henning
    Balducci, Andrea
    Borchardt, Lars
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (05) : 2438 - 2447
  • [37] Highly Conductive and Thermostable Grafted Polyrotaxane/Ceramic Hybrid Polymer Electrolyte for Solid-State Lithium-Metal Batteries
    He, Yuyue
    Li, Ying
    Tong, Qingsong
    Zhang, Jindan
    Weng, Jingzheng
    Zhu, Mengqi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (35) : 41593 - 41599
  • [38] Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries
    Li, Chenghan
    Zhou, Shi
    Dai, Lijie
    Zhou, Xuanyi
    Zhang, Biao
    Chen, Liwen
    Zeng, Tao
    Liu, Yating
    Tang, Yongfu
    Jiang, Jie
    Huang, Jianyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (43) : 24661 - 24669
  • [39] High-Performance Solid-State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks
    Li, Lei
    Secor, Ethan B.
    Chen, Kan-Sheng
    Zhu, Jian
    Liu, Xiaolong
    Gao, Theodore Z.
    Seo, Jung-Woo T.
    Zhao, Yichao
    Hersam, Mark C.
    ADVANCED ENERGY MATERIALS, 2016, 6 (20)
  • [40] A nanowire-nanoparticle double composite polymer electrolyte for high performance ambient temperature solid-state lithium batteies
    Wang, Shi
    Zhang, Lei
    Li, Jingyu
    Zeng, Qinghui
    Liu, Xu
    Chen, Pingping
    Lai, Wen-Yong
    Zhao, Tong
    Zhang, Liaoyun
    ELECTROCHIMICA ACTA, 2019, 320