Anthropogenic emissions during Arctas-A: mean transport characteristics and regional case studies

被引:17
作者
Harrigan, D. L. [1 ,4 ]
Fuelberg, H. E. [1 ]
Simpson, I. J. [2 ]
Blake, D. R. [2 ]
Carmichael, G. R. [3 ]
Diskin, G. S. [5 ]
机构
[1] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA
[3] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA
[4] Natl Weather Serv, Natl Ocean & Atmospher Adm, Tallahassee, FL USA
[5] NASA, Langley Res Ctr, Hampton, VA 23665 USA
关键词
VOLATILE ORGANIC-COMPOUNDS; DISPERSION MODEL FLEXPART; ASIAN CONTINENTAL OUTFLOW; AIR-POLLUTION TRANSPORT; SOUTH ATLANTIC REGION; PACIFIC TRACE-P; CARBONYL SULFIDE; CHEMICAL EVOLUTION; WESTERN PACIFIC; COMPOUNDS VOCS;
D O I
10.5194/acp-11-8677-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The National Aeronautics and Space Administration (NASA) conducted the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission during 2008 as a part of the International Polar Year (IPY). The purpose of ARCTAS was to study the factors responsible for changes in the Arctic's atmospheric composition and climate. A major emphasis was to investigate Arctic haze, which is most pronounced during winter and early spring. This study focuses on the spring phase of ARCTAS (ARCTAS-A) that was based in Alaska during April 2008. Although anthropogenic emissions historically have been associated with Arctic haze, biomass burning emissions dominated the ARCTAS-A period and have been the focus of many ARCTAS related studies. This study determines mean transport characteristics of anthropogenic emissions during ARCTAS-A. Trajectories are initiated each day from three significant regions of anthropogenic emissions (Asia, North America, and Europe). The fifteen day forward trajectories are calculated using data from the Weather Research and Forecasting (WRF) model at 45 km horizontal resolution. The trajectory calculations indicate: origins of emissions that reach the Arctic (defined as north of 70 degrees N) within fifteen days, pathways of these emissions, Arctic entry locations, and altitudes at which the trajectories enter the Arctic. Three cases during the ARCTAS-A period (one for each of the regions above) are examined using backward trajectories and chemical fingerprinting based on in situ data sampled from the NASA DC-8. The fingerprinting utilizes volatile organic compounds that represent pure anthropogenic tracers, Asian anthropogenic pollution, incomplete combustion, and natural gas emissions. We determine flight legs containing anthropogenic emissions and the pathways travelled by these emissions. Results show that the DC-8 sampled anthropogenic emissions from Asia, North America, and Europe during the spring phase of ARCTAS. The pathways travelled by these emissions agree with our derived transport characteristics and previous studies of Arctic transport. Meteorological analysis and trajectory calculations indicate that middle latitude cyclones and their associated warm conveyor belts play an important role in lofting the surface based emissions to their sampling altitude in all three cases.
引用
收藏
页码:8677 / 8701
页数:25
相关论文
共 77 条
[21]  
2
[22]   Southern Hemispheric halon trends (1978-1998) and global halon emissions [J].
Fraser, PJ ;
Oram, DE ;
Reeves, CE ;
Penkett, SA ;
McCulloch, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D13) :15985-15999
[23]   A meteorological overview of the ARCTAS 2008 mission [J].
Fuelberg, H. E. ;
Harrigan, D. L. ;
Sessions, W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (02) :817-842
[24]   TRACE a trajectory intercomparison .2. Isentropic and kinematic methods [J].
Fuelberg, HE ;
Loring, RO ;
Watson, MV ;
Sinha, MC ;
Pickering, KE ;
Thompson, AM ;
Sachse, GW ;
Blake, DR ;
Schoeberl, MR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D19) :23927-23939
[25]   A meteorological overview of the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) period [J].
Fuelberg, HE ;
Hannan, JR ;
van Velthoven, PFJ ;
Browell, EV ;
Bieberbach, G ;
Knabb, RD ;
Gregory, GL ;
Pickering, KE ;
Selkirk, HB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D3) :3633-3651
[26]  
HILEMAN B, 1983, ENVIRON SCI TECHNOL, V17, pA232
[27]  
HOFF RM, 1988, J APPL METEOROL, V27, P125, DOI 10.1175/1520-0450(1988)027<0125:VSOAHO>2.0.CO
[28]  
2
[29]   ON THE ATMOSPHERIC TRANSPORT OF POLLUTION TO THE ARCTIC [J].
IVERSEN, T .
GEOPHYSICAL RESEARCH LETTERS, 1984, 11 (05) :457-460
[30]   The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results [J].
Jacob, D. J. ;
Crawford, J. H. ;
Maring, H. ;
Clarke, A. D. ;
Dibb, J. E. ;
Emmons, L. K. ;
Ferrare, R. A. ;
Hostetler, C. A. ;
Russell, P. B. ;
Singh, H. B. ;
Thompson, A. M. ;
Shaw, G. E. ;
McCauley, E. ;
Pederson, J. R. ;
Fisher, J. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (11) :5191-5212