Para-Sasakian geometry in thermodynamic fluctuation theory

被引:20
作者
Bravetti, A. [1 ]
Lopez-Monsalvo, C. S. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, AP 70543, Mexico City 04510, DF, Mexico
关键词
Sasakian manifolds; fluctuation theory; statistical mechanics; thermodynamics; contact geometry; RIEMANNIAN GEOMETRY;
D O I
10.1088/1751-8113/48/12/125206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we tie concepts derived from statistical mechanics, information theory and contact Riemannian geometry within a single consistent formalism for thermodynamic fluctuation theory. We derive the concrete relations characterizing the geometry of the thermodynamic phase space stemming from the relative entropy and the Fisher-Rao information matrix. In particular, we show that the thermodynamic phase space is endowed with a natural para-contact pseudo-Riemannian structure derived from a statistical moment expansion which is para-Sasaki and eta-Einstein. Moreover, we prove that such manifold is locally isomorphic to the hyperbolic Heisenberg group. In this way we show that the hyperbolic geometry and the Heisenberg commutation relations on the phase space naturally emerge from classical statistical mechanics. Finally, we argue on the possible implications of our results.
引用
收藏
页数:21
相关论文
共 29 条
  • [1] Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
  • [2] Blair, 2002, RIEMANNIAN GEOMETRY
  • [3] Bravetti A, EINSTEIN GAUSS UNPUB
  • [4] The conformal metric structure of Geometrothermodynamics
    Bravetti, Alessandro
    Lopez-Monsalvo, Cesar S.
    Nettel, Francisco
    Quevedo, Hernando
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [5] On the symmetry of real-space renormalisation
    Brody, DC
    Ritz, A
    [J]. NUCLEAR PHYSICS B, 1998, 522 (03) : 588 - 604
  • [6] Information geometry in vapour-liquid equilibrium
    Brody, Dorje C.
    Hook, Daniel W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (02)
  • [7] Geometry of H-paracontact metric manifolds
    Calvaruso, Giovanni
    Perrone, Domenico
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 325 - 346
  • [8] Measuring thermodynamic length
    Crooks, Gavin E.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (10)
  • [9] Contact Riemannian geometry and thermodynamics
    Hernandez, G
    Lacomba, EA
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1998, 8 (03) : 205 - 216