Lattice implication ordered semigroups

被引:21
作者
Pan, Xiaodong [1 ,2 ]
Xu, Yang [2 ]
机构
[1] SW Jiaotong Univ, Dept Math, Chengdu 610031, Peoples R China
[2] SW Jiaotong Univ, Intelligent Control Dev Ctr, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
lattice ordered semigroup; implication semigroup; lattice implication algebra; filter; sl ideal;
D O I
10.1016/j.ins.2007.08.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
From the viewpoint of semantics, lattice implication algebras provide a basis to establish lattice-valued logic with truth value in a relatively general lattice. In this paper, we first introduce two notions of lattice implication n-ordered semigroup, and lattice implication p-ordered semigroup, which induced by lattice implication algebras. Secondly, we study some of their basic properties and prove that a lattice implication n-ordered semigroup is a residuated semigroup, and a lattice implication p-ordered semigroup is an arithmetic lattice ordered semigroup. We also define the homomorphism mapping between lattice implication n-ordered semigroups. Finally, we discuss some properties of filters and sl ideals in lattice implication n-ordered semigroups and lattice implication p-ordered semigroups. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 35 条
[1]  
[Anonymous], 2003, STUD FUZZINESS SOFT
[2]  
[Anonymous], MATH SEM NOTES
[3]   REPRESENTABLE DIVISIBILITY SEMIGROUPS [J].
BOSBACH, B .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1991, 34 :45-64
[4]   HOMOMORPHISMS OF IMPLICATIVE SEMIGROUPS [J].
CHAN, MW ;
SHUM, KP .
SEMIGROUP FORUM, 1993, 46 (01) :7-15
[5]  
Fuchs L, 1963, PARTIALLY ORDERED AL
[6]  
Howie J. M., 1995, FUNDAMENTALS SEMIGRO
[7]   On ordered filters of implicative semigroups [J].
Jun, YB ;
Meng, J ;
Xin, XL .
SEMIGROUP FORUM, 1997, 54 (01) :75-82
[8]   Redefined fuzzy implicative filters [J].
Jun, Young Bae ;
Xu, Yang ;
Ma, Jun .
INFORMATION SCIENCES, 2007, 177 (06) :1422-1429
[9]   Fuzzy bi-ideals in ordered semigroups [J].
Kehayopulu, N ;
Tsingelis, M .
INFORMATION SCIENCES, 2005, 171 (1-3) :13-28
[10]   Fuzzy sets in ordered groupoids [J].
Kehayopulu, N ;
Tsingelis, M .
SEMIGROUP FORUM, 2002, 65 (01) :128-132