Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing

被引:24
作者
Gialluisi, Alessandro [1 ]
Di Castelnuovo, Augusto [2 ]
Costanzo, Simona [1 ]
Bonaccio, Marialaura [1 ]
Persichillo, Mariarosaria [1 ]
Magnacca, Sara [2 ]
De Curtis, Amalia [1 ]
Cerletti, Chiara [1 ]
Donati, Maria Benedetta [1 ]
de Gaetano, Giovanni [1 ]
Capobianco, Enrico [3 ]
Iacoviello, Licia [1 ,4 ]
机构
[1] IRCCS Neuromed, Dept Epidemiol & Prevent, Via Elettron, I-86077 Pozzilli, Italy
[2] Mediterranea Cardioctr, Naples, Italy
[3] Univ Miami, Inst Data Sci & Comp, Miami, FL USA
[4] Univ Insubria, Res Ctr Epidemiol & Prevent Med EPIMED, Dept Med & Surg, Varese, Italy
关键词
Biological ageing; Deep neural networks; Blood markers; Mortality; Hospitalizations; Quality of life; Lifestyles; Socioeconomic status; SF-36 HEALTH SURVEY; MEDITERRANEAN DIET; BRAIN AGE; METAANALYSIS; MORTALITY; ADHERENCE; BIOMARKER; EDUCATION; OLDER; RISK;
D O I
10.1007/s10654-021-00797-7
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Deep Neural Networks (DNN) have been recently developed for the estimation of Biological Age (BA), the hypothetical underlying age of an organism, which can differ from its chronological age (CA). Although promising, these population-specific algorithms warrant further characterization and validation, since their biological, clinical and environmental correlates remain largely unexplored. Here, an accurate DNN was trained to compute BA based on 36 circulating biomarkers in an Italian population (N = 23,858; age >= 35 years; 51.7% women). This estimate was heavily influenced by markers of metabolic, heart, kidney and liver function. The resulting Delta age (BA-CA) significantly predicted mortality and hospitalization risk for all and specific causes. Slowed biological aging (Delta age < 0) was associated with higher physical and mental wellbeing, healthy lifestyles (e.g. adherence to Mediterranean diet) and higher socioeconomic status (educational attainment, household income and occupational status), while accelerated aging (Delta age > 0) was associated with smoking and obesity. Together, lifestyles and socioeconomic variables explained similar to 48% of the total variance in Delta age, potentially suggesting the existence of a genetic basis. These findings validate blood-based biological aging as a marker of public health in adult Italians and provide a robust body of knowledge on its biological architecture, clinical implications and potential environmental influences.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 68 条
[51]   DNA methylation age of blood predicts all-cause mortality in later life [J].
Marioni, Riccardo E. ;
Shah, Sonia ;
McRae, Allan F. ;
Chen, Brian H. ;
Colicino, Elena ;
Harris, Sarah E. ;
Gibson, Jude ;
Henders, Anjali K. ;
Redmond, Paul ;
Cox, Simon R. ;
Pattie, Alison ;
Corley, Janie ;
Murphy, Lee ;
Martin, Nicholas G. ;
Montgomery, Grant W. ;
Feinberg, Andrew P. ;
Fallin, M. Daniele ;
Multhaup, Michael L. ;
Jaffe, Andrew E. ;
Joehanes, Roby ;
Schwartz, Joel ;
Just, Allan C. ;
Lunetta, Kathryn L. ;
Murabito, Joanne M. ;
Starr, John M. ;
Horvath, Steve ;
Baccarelli, Andrea A. ;
Levy, Daniel ;
Visscher, Peter M. ;
Wray, Naomi R. ;
Deary, Ian J. .
GENOME BIOLOGY, 2015, 16
[52]   PRACTICE POINTER Healthier ageing [J].
Myint, Phyo Kyaw ;
Welch, Ailsa A. .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 344
[53]   Deep biomarkers of human aging: Application of deep neural networks to biomarker development [J].
Putin, Evgeny ;
Mamoshina, Polina ;
Aliper, Alexander ;
Korzinkin, Mikhail ;
Moskalev, Alexey ;
Kolosov, Alexey ;
Ostrovskiy, Alexander ;
Cantor, Charles ;
Vijg, Jan ;
Zhavoronkov, Alex .
AGING-US, 2016, 8 (05) :1021-1033
[54]   Epigenetic clock analysis of diet, exercise, education, and lifestyle factors [J].
Quach, Austin ;
Levine, Morgan E. ;
Tanaka, Toshiko ;
Lu, Ake T. ;
Chen, Brian H. ;
Ferrucci, Luigi ;
Ritz, Beate ;
Bandinelli, Stefania ;
Neuhouser, Marian L. ;
Beasley, Jeannette M. ;
Snetselaar, Linda ;
Wallace, Robert B. ;
Tsao, Philip S. ;
Absher, Devin ;
Assimes, Themistocles L. ;
Stewart, James D. ;
Li, Yun ;
Hou, Lifang ;
Baccarelli, Andrea A. ;
Whitsel, Eric A. ;
Horvath, Steve .
AGING-US, 2017, 9 (02) :419-446
[55]  
R Core Team, 2022, R: a language and environment for statistical computing
[56]   Biological ageing and cardiovascular disease [J].
Samani, Nilesh J. ;
van der Harst, Pim .
HEART, 2008, 94 (05) :537-539
[57]   Cystatin C and aging success [J].
Sarnak, Mark J. ;
Katz, Ronit ;
Fried, Linda F. ;
Siscovick, David ;
Kestenbaum, Brian ;
Seliger, Stephen ;
Rijkhi, Dena ;
Tracy, Russell ;
Newman, Anne B. ;
Shlipak, Michael G. .
ARCHIVES OF INTERNAL MEDICINE, 2008, 168 (02) :147-153
[58]   Risk of colorectal cancer incidence and mortality after polypectomy: a Swedish record-linkage study [J].
Song, Mingyang ;
Emilsson, Louise ;
Bozorg, Soran R. ;
Nguyen, Long H. ;
Joshi, Amit D. ;
Staller, Kyle ;
Nayor, Jennifer ;
Chan, Andrew T. ;
Ludvigsson, Jonas F. .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (06) :537-547
[59]   Differences between chronological and brain age are related to education and self-reported physical activity [J].
Steffener, Jason ;
Habeck, Christian ;
O'Shea, Deirdre ;
Razlighi, Qolamreza ;
Bherer, Louis ;
Stern, Yaakov .
NEUROBIOLOGY OF AGING, 2016, 40 :138-144
[60]   Feeling Older and Risk of Hospitalization: Evidence From Three Longitudinal Cohorts [J].
Stephan, Yannick ;
Sutin, Angelina R. ;
Terracciano, Antonio .
HEALTH PSYCHOLOGY, 2016, 35 (06) :634-637