Measure of the non-Gaussian character of a quantum state

被引:129
作者
Genoni, Marco G. [1 ]
Paris, Matteo G. A. [1 ,2 ]
Banaszek, Konrad [3 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Inst Sci Interchange, I-10133 Turin, Italy
[3] Nicholas Copernicus Univ, Inst Phys, PL-87100 Torun, Poland
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevA.76.042327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the issue of quantifying the non-Gaussian character of a bosonic quantum state and introduce a non-Gaussianity measure based on the Hilbert-Schmidt distance between the state under examination and a reference Gaussian state. We analyze in detail the properties of the proposed measure and exploit it to evaluate the non-Gaussianity of some relevant single-mode and multimode quantum states. The evolution of non-Gaussianity is also analyzed for quantum states undergoing the processes of Gaussification by loss and de-Gaussification by photon-subtraction. The suggested measure is easily computable for any state of a bosonic system and allows one to define a corresponding measure for the non-Gaussian character of a quantum operation.
引用
收藏
页数:6
相关论文
共 21 条
[1]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[2]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[3]   Non-Gaussian cloning of quantum coherent states is optimal -: art. no. 070501 [J].
Cerf, NJ ;
Krüger, O ;
Navez, P ;
Werner, RF ;
Wolf, MM .
PHYSICAL REVIEW LETTERS, 2005, 95 (07)
[4]   Teleportation improvement by conditional measurements on the two-mode squeezed vacuum [J].
Cochrane, PT ;
Ralph, TC ;
Milburn, GJ .
PHYSICAL REVIEW A, 2002, 65 (06) :6
[5]   Multiphoton quantum optics and quantum state engineering [J].
Dell'Anno, F ;
De Siena, S ;
Illuminati, F .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 428 (2-3) :53-168
[6]   Entanglement purification of Gaussian continuous variable quantum states [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (17) :4002-4005
[7]   INTRODUCTION TO THE BASICS OF ENTANGLEMENT THEORY IN CONTINUOUS-VARIABLE SYSTEMS [J].
Eisert, J. ;
Plenio, M. B. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :479-506
[8]  
Ferraro A., 2005, Gaussian States in Quantum Information
[9]   Evaluating capacities of bosonic Gaussian channels [J].
Holevo, A.S. ;
Werner, R.F. .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03) :323121-323121
[10]   SQUEEZED STATES WITH THERMAL NOISE .1. PHOTON-NUMBER STATISTICS [J].
MARIAN, P ;
MARIAN, TA .
PHYSICAL REVIEW A, 1993, 47 (05) :4474-4486