A FAST SPECTRAL METHOD FOR THE BOLTZMANN COLLISION OPERATOR WITH GENERAL COLLISION KERNELS

被引:65
作者
Gamba, Irene M. [1 ,2 ]
Haack, Jeffrey R. [3 ]
Hauck, Cory D. [4 ]
Hu, Jingwei [5 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA
[4] Oak Ridge Natl Lab, Computat & Appl Math Grp, Oak Ridge, TN 37831 USA
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Boltzmann collision integral; spectral method; convolution; fast Fourier transform; Lebedev quadrature; VARIABLE SOFT-SPHERE; EQUATION; APPROXIMATION; GASES; MODEL;
D O I
10.1137/16M1096001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple fast spectral method for the Boltzmann collision operator with general collision kernels. In contrast to the direct spectral method [L. Pareschi and G. Russo, SIAM J. Numer. Anal., 37 (2000), pp. 1217-1245; I. M. Gamba and S. H. Tharkabhushanam, J. Comput. Phys., 228 (2009), pp. 2012-2036], which requires O(N-6) memory to store precomputed weights and has O(N-6) numerical complexity, the new method has complexity O(MN4 log N), where N is the number of discretization points in each of the three velocity dimensions and M is the total number of discretization points on the sphere and M << N-2. Furthermore, it requires no precomputation for the variable hard sphere model and only O(MN4) memory to store precomputed functions for more general collision kernels. Although a faster spectral method is available [C. Mouhot and L. Pareschi, Math. Comp., 75 (2006), pp. 1833-1852] (with complexity O(MN3 log N)), it works only for hard sphere molecules, thus limiting its use for practical problems. Our new method, on the other hand, can apply to arbitrary collision kernels. A series of numerical tests is performed to illustrate the efficiency and accuracy of the proposed method.
引用
收藏
页码:B658 / B674
页数:17
相关论文
共 32 条
[1]  
Aletti G, 2010, MODEL SIMUL SCI ENG, P203, DOI 10.1007/978-0-8176-4946-3_8
[2]  
ALONSO R., 2016, ARXIV161104171
[3]  
Beentjes C, 2015, Technical Report
[4]  
Bird G., 1994, MOL GAS DYNAMICS DIR
[5]  
BOBYLEV AV, 1995, CR ACAD SCI I-MATH, V320, P639
[6]   Fast deterministic method of solving the Boltzmann equation for hard spheres [J].
Bobylev, AV ;
Rjasanow, S .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1999, 18 (05) :869-887
[7]  
BOBYLEV AV, 1975, DOKL AKAD NAUK SSSR+, V225, P1296
[8]  
Buet C., 1996, Transport Theory and Statistical Physics, V25, P33, DOI 10.1080/00411459608204829
[9]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[10]  
Cercignani C., 1988, BOLTZMANN EQUATION I