Thermal Properties of Lipid Bilayers Determined Using Upconversion Nanothermometry

被引:102
作者
Bastos, Ana R. N. [1 ]
Brites, Carlos D. S. [1 ]
Rojas-Gutierrez, Paola A. [2 ,3 ]
DeWolf, Christine [2 ,3 ]
Ferreira, Rute A. S. [1 ]
Capobianco, John A. [2 ,3 ]
Carlos, Luis D. [1 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, CICECO, Dept Phys, P-3810193 Aveiro, Portugal
[2] Concordia Univ, Dept Chem & Biochem, 7141 Sherbrooke St West, Montreal, PQ H4B 1R6, Canada
[3] Concordia Univ, Ctr NanoSci Res, 7141 Sherbrooke St West, Montreal, PQ H4B 1R6, Canada
基金
欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
lipid bilayer; luminescence; nanothermometry; thermal conductivity; upconversion nanoparticle; THERMOMETRY; NANOPARTICLES; CONDUCTIVITY; NANOCRYSTALS; LIYF4;
D O I
10.1002/adfm.201905474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Luminescent nanomaterials have shown promise for thermal sensing in bio-applications, yet little is known of the role of organic coatings such as supported lipid bilayers on the thermal conductivity between the nanomaterial and its environment. Additionally, since the supported lipid bilayer mimics the cell membrane, its thermal properties are fundamentally important to understand the spatial variations of temperature and heat transfer across membranes. Herein, a new approach is described that enables direct measurement of these thermal properties using a LiYF4:Er3+/Yb3+ upconverting nanoparticle encapsulated within a conformal supported lipid bilayer and dispersed in water as a temperature probe yielding the temperature gradient across the bilayer. The thermal conductivity of the lipid bilayer is measured as a function of the temperature, being 0.20 +/- 0.02 W m(-1) K-1 at 300 K. For the uncapped nanoparticles dispersed in water, the temperature dependence of the thermal conductivity is also measured in the 300-314 K range as [0.63-0.69] +/- 0.11 W m(-1) K-1. Using a lumped elements model, the directional heat transfer is calculated at each of the system interfaces, namely, nanoparticle-bilayer and bilayer-nanofluid, opening a new avenue to understand the membrane biophysical properties as well as the thermal properties of organic and polymer coatings.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range -: art. no. 103514 [J].
Aggarwal, RL ;
Ripin, DJ ;
Ochoa, JR ;
Fan, TY .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (10)
[2]   Review on thermal properties of nanofluids: Recent developments [J].
Angayarkanni, S. A. ;
Philip, John .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2015, 225 :146-176
[3]   A theoretical study of biological membrane response to temperature gradients at the single-cell level [J].
Atia, Lior ;
Givli, Sefi .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (95)
[4]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[5]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[6]   Micro/Nanoscale Thermometry for Cellular Thermal Sensing [J].
Bai, Tingting ;
Gu, Ning .
SMALL, 2016, 12 (34) :4590-4610
[7]   Upconverting Nanoparticles Working As Primary Thermometers In Different Media [J].
Balabhadra, Sangeetha ;
Debasu, Mengistie L. ;
Brites, Carlos D. S. ;
Ferreira, Rute A. S. ;
Carlos, Luis D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (25) :13962-13968
[8]  
Bergman TL., 2011, Introduction to heat transfer, DOI DOI 10.1016/J.APPLTHERMALENG.2011.03.022
[9]   LANTHANIDE-DOPED upconversion nanoparticles [J].
Bettinelli, Marco ;
Carlos, Luis Dias ;
Liu, Xiaogang .
PHYSICS TODAY, 2015, 68 (09) :38-44
[10]   Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles [J].
Bogdan, Nicoleta ;
Vetrone, Fiorenzo ;
Ozin, Geoffrey A. ;
Capobianco, John A. .
NANO LETTERS, 2011, 11 (02) :835-840