共 36 条
Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression
被引:30
作者:
De Brouwer, Edward
[1
]
Becker, Thijs
[2
]
Moreau, Yves
[1
]
Havrdova, Eva Kubala
[4
]
Trojano, Maria
[5
]
Eichau, Sara
[6
]
Ozakbas, Serkan
[7
]
Onofrj, Marco
[8
]
Grammond, Pierre
[9
]
Kuhle, Jens
[10
,11
]
Kappos, Ludwig
[10
,11
]
Sola, Patrizia
[12
]
Cartechini, Elisabetta
[13
]
Lechner-Scott, Jeannette
[14
]
Alroughani, Raed
[15
]
Gerlach, Oliver
[16
]
Kalincik, Tomas
[17
,18
]
Granella, Franco
[19
]
Grand'Maison, Francois
[20
]
Bergamaschi, Roberto
[21
]
Sa, Maria Jose
[22
,23
]
Van Wijmeersch, Bart
[24
]
Soysal, Aysun
[25
]
Luis Sanchez-Menoyo, Jose
[26
]
Solaro, Claudio
[27
]
Boz, Cavit
[28
]
Iuliano, Gerardo
[29
]
Buzzard, Katherine
[30
]
Aguera-Morales, Eduardo
[31
]
Terzi, Murat
[32
]
Castillo Trivio, Tamara
[33
]
Spitaleri, Daniele
[34
]
Van Pesch, Vincent
[35
]
Shaygannejad, Vahid
[36
]
Moore, Fraser
[37
]
Oreja-Guevara, Celia
[38
]
Maimone, Davide
[39
]
Gouider, Riadh
[40
]
Csepany, Tunde
[41
]
Ramo-Tello, Cristina
[42
]
Peeters, Liesbet
[2
,3
]
机构:
[1] Katholieke Univ Leuven, ESAT STADIUS, B-3001 Leuven, Belgium
[2] Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium
[3] Hasselt Univ, Biomed Res Inst, Dept Immunol, B-3590 Diepenbeek, Belgium
[4] Charles Univ Prague, Gen Univ Hosp, Prague, Czech Republic
[5] Univ Bari, Dept Basic Med Sci Neurosci & Sense Organs, Bari, Italy
[6] Hosp Univ Virgen Macarena, Seville, Spain
[7] Dokuz Eylul Univ, Konak Izmir, Turkey
[8] Univ G dAnnunzio, Chieti, Italy
[9] CISSS Chaudire Appalache, Levis, PQ, Canada
[10] Univ Basel, Univ Hosp Basel, MS Ctr, Neurol Clin & Policlin, Basel, Switzerland
[11] Univ Basel, Univ Hosp Basel, Res Ctr Clin Neuroimmunol & Neurosci Basel RC2NB, Basel, Switzerland
[12] Azienda Osped Univ, Modena, Italy
[13] Azienda Sanitaria Unica Reg Marche AV3, Macerata, Italy
[14] Univ Newcastle, Newcastle, NSW, Australia
[15] Amiri Hosp, Kuwait, Kuwait
[16] Zuyderland Ziekenhuis, Sittard, Netherlands
[17] Royal Melbourne Hosp, Melbourne MS Ctr, Dept Neurol, Melbourne, Vic, Australia
[18] Univ Melbourne, Dept Med, CORe, Melbourne, Vic, Australia
[19] Univ Parma, Parma, Italy
[20] Neuro Rive Sud, Quebec City, PQ, Canada
[21] IRCCS Mondino Fdn, Pavia, Italy
[22] Ctr Hosp Univ So Joo, Dept Neurol, Porto, Portugal
[23] Univ Fernando Pessoa, Porto, Portugal
[24] Hasselt Univ, Rehabil & MS Ctr Overpelt, Hasselt, Belgium
[25] Bakirkoy Educ & Res Hosp Psychiat & Neurol Dis, Istanbul, Turkey
[26] Hosp Galdakao Usansolo, Galdakao, Spain
[27] Mons L Novarese Hosp, Dept Rehabil, Moncrivello, Italy
[28] Farabi Hosp, KTU Med Fac, Trabzon, Turkey
[29] Osped Riuniti Salerno, Salerno, Italy
[30] Box Hill Hosp, Melbourne, Vic, Australia
[31] Univ Hosp Reina Sofia, Cordoba, Spain
[32] 19 Mayis Univ, Samsun, Turkey
[33] Hosp Univ Donostia, San Sebastain, Spain
[34] Azienda Osped Rilievo Nazl San Giuseppe Moscati A, Avellino, Italy
[35] Clin Univ St Luc, Brussels, Belgium
[36] Isfahan Univ Med Sci, Isfahan Neurosci Res Ctr, Esfahan, Iran
[37] Jewish Gen Hosp, Montreal, PQ, Canada
[38] Hosp Clin San Carlos, Madrid, Spain
[39] Garibaldi Hosp, Catania, Italy
[40] Razi Hosp, Manouba, Tunisia
[41] Univ Debrecen, Debrecen, Hungary
[42] Hosp Badalona Germans Trias & Pujol, Badalona, Spain
关键词:
Multiple sclerosis;
Machine learning;
Longitudinal data;
Recurrent neural networks;
Electronic health records;
Disability progression;
Real-world data;
MULTIPLE-SCLEROSIS;
REGISTRY;
THERAPY;
D O I:
10.1016/j.cmpb.2021.106180
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Background and Objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS. (c) 2021 Published by Elsevier B.V.
引用
收藏
页数:14
相关论文