The Kleinman iteration for nonstabilizable systems

被引:2
作者
Benner, P
Hernández, V
Pastor, A
机构
[1] Tech Univ Berlin, Fak Math & Nat Wissensch 2, Inst Math, D-10623 Berlin, Germany
[2] Univ Politecn Valencia, Dept Sistemas Informat & Computac, E-46071 Valencia, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
关键词
algebraic Riccati equation; Newton's method; Kleinman iteration; Lyapunov equation; continuous-time linear systems; nonstabilizable systems; linear-quadratic optimal control;
D O I
10.1007/s00498-003-0130-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the computation of Hermitian nonnegative definite solutions of algebraic Riccati equations. These solutions are the limit, P = lim(i -->infinity) P-i, of a sequence of matrices obtained by solving a sequence of Lyapunov equations. The procedure parallels the well-known Kleinman technique but the stabilizability condition on the underlying linear time-invariant system is removed. The convergence of the constructed sequence {P-i }(igreater than or equal to1) is guaranteed by the minimality of P-i in the set of Hermitian nonnegative definite solutions of the Lyapunov equation in the ith iteration step.
引用
收藏
页码:76 / 93
页数:18
相关论文
共 21 条