Remaining useful life assessment of lithium-ion batteries in implantable medical devices

被引:87
作者
Hu, Chao [1 ,2 ]
Ye, Hui [3 ]
Jain, Gaurav [3 ]
Schmidt, Craig [3 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[3] Medtron Energy & Component Ctr, Brooklyn Ctr, MN 55430 USA
基金
美国国家科学基金会;
关键词
Capacity; Health monitoring; Prognostics; Remaining useful life; Lithium-ion battery; STATE-OF-CHARGE; CAPACITY FADE; MANAGEMENT-SYSTEMS; PARTICLE FILTERS; MODEL; PROGNOSTICS; PARAMETER; DISTRIBUTIONS; FRAMEWORK; PACKS;
D O I
10.1016/j.jpowsour.2017.11.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.
引用
收藏
页码:118 / 130
页数:13
相关论文
共 52 条
[1]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[2]   A generic model-free approach for lithium-ion battery health management [J].
Bai, Guangxing ;
Wang, Pingfeng ;
Hu, Chao ;
Pecht, Michael .
APPLIED ENERGY, 2014, 135 :247-260
[3]   Interacting multiple model particle filter [J].
Boers, Y ;
Driessen, JN .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2003, 150 (05) :344-349
[4]  
Bores Y., 2002, TRACK APPL AUTOM, V38, P2153
[5]  
Brown Jason, 2006, 208 ECS M
[6]   An overview of existing methods and recent advances in sequential Monte Carlo [J].
Cappe, Olivier ;
Godsill, Simon J. ;
Moulines, Eric .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :899-924
[7]   Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles [J].
Chiang, Yi-Hsien ;
Sean, Wu-Yang ;
Ke, Jia-Cheng .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :3921-3932
[8]   Particle filters for state estimation of jump Markov linear systems [J].
Doucet, A ;
Gordon, NJ ;
Krishnamurthy, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (03) :613-624
[9]  
Doucet A., 2009, The Oxford Handbook of Nonlinear Filtering, V12, P3, DOI DOI 10.1111/1467-9868.00280
[10]   Behavior and state-of-health monitoring of Li-ion batteries using impedence spectroscopy and recurrent neural networks [J].
Eddahech, Akram ;
Briat, Olivier ;
Bertrand, Nicolas ;
Deletage, Jean-Yves ;
Vinassa, Jean-Michel .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 42 (01) :487-494