Existence and Ulam Stability of Solutions for Conformable Impulsive Differential Equations

被引:8
作者
Qiu, Wanzheng [1 ]
Wang, JinRong [1 ,2 ]
O'Regan, Donal [3 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
基金
中国国家自然科学基金;
关键词
Conformable impulsive differential equations; Existence of solutions; Ulam-Hyers and Ulam-Hyers-Rassias stability; MODELS;
D O I
10.1007/s41980-019-00347-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we use mathematical induction to derive the representation of the solution of conformable impulsive linear differential equations with constant coefficients. We present the existence of solutions to impulsive nonlinear differential equations with constant coefficients under mild conditions on the nonlinear term. In addition, we consider the concepts of Ulam stability for this type of equation and give Ulam-Hyers and Ulam-Hyers-Rassias stability results. Finally, we give examples to verify our theoretical results.
引用
收藏
页码:1613 / 1637
页数:25
相关论文
共 22 条
[1]  
Abdeljawad T., 2017, ADV DIFFERENCE EQU, V2017, P1
[2]  
Abdeljawad T., 2015, J SEMIGROUP THEORY A, V2015, P1
[3]   Fractional logistic models in the frame of fractional operators generated by conformable derivatives [J].
Abdeljawad, Thabet ;
Al-Mdallal, Qasem M. ;
Jarad, Fahd .
CHAOS SOLITONS & FRACTALS, 2019, 119 (94-101) :94-101
[4]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[5]  
Abu Hammad M., 2014, International Journal of Differential Equations and Applications, V13, P177
[6]   Variation of parameters for local fractional nonhomogenous linear-differential equations [J].
Al Horani, Mohammed ;
Abu Hammad, Mamon ;
Khalil, Roshdi .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (02) :147-153
[7]   Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems [J].
Al-Refai, Mohammed ;
Abdeljawad, Thabet .
COMPLEXITY, 2017,
[8]   Existence of solution to a local fractional nonlinear differential equation [J].
Bayour, Benaoumeur ;
Torres, Delfim F. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 :127-133
[9]   Dynamic cobweb models with conformable fractional derivatives [J].
Bohner, Martin ;
Hatipoglu, Veysel Fuat .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 :157-167
[10]   Fractional Newton mechanics with conformable fractional derivative [J].
Chung, Won Sang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :150-158