Structured multi-block grid partitioning using balanced cut trees

被引:1
作者
Geiser, Georg [1 ]
Schroeder, Wolfgang [2 ]
机构
[1] German Aerosp Ctr DLR, Inst Prop Technol AT, Linder Halle, D-51147 Cologne, Germany
[2] Rhein Westfal TH Aachen, Inst Aerodynam AIA, Wullnerstr 5a, D-52062 Aachen, Germany
关键词
Grid partitioning; Structured multi-block grids; Load balancing; Parallel computing; PARALLEL; COMPUTATIONS;
D O I
10.1016/j.jpdc.2019.12.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An algorithm to partition structured multi-block hexahedral grids for a load balanced assignment of the partitions to a given number of bins is presented. It uses a balanced hierarchical cut tree data structure to partition the structured blocks into structured partitions. The refinement of the cut tree attempts to generate equally shaped partitions with a low amount of additional surface. A multi-block load balancing approach is presented that guarantees to satisfy an upper bound of load imbalance. The partition quality of the algorithm is compared to established recursive edge bisection approaches and an unstructured partitioning using METIS. Two generic and two turbomachinery test cases demonstrate the superior quality and fast runtime of the present algorithm at generating load balanced structured partitions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 25 条
[1]   Parallel single grid and multigrid solution of industrial compressible flow problems [J].
Alund, A ;
Lotstedt, P ;
Sillen, M .
COMPUTERS & FLUIDS, 1997, 26 (08) :775-791
[2]  
Anderson J. D., 1995, COMPUTATIONAL FLUID
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[4]  
[Anonymous], 1998, Technical Report NASA/TM-1998-208444
[5]  
Apponsah K. P., 2012, 20 ANN C CFD SOC CAN
[6]  
Becker K., 2010, P 5 EUROPEAN C COMPU
[7]  
Boman EG, 2012, SCI PROGRAMMING-NETH, V20, P129, DOI [10.1155/2012/713587, 10.3233/SPR-2012-0342]
[8]  
Cambier L., 2011, OVERVIEW MULTIPURPOS, P1
[9]   Optimization and Performance Modeling of Stencil Computations on Modern Microprocessors [J].
Datta, Kaushik ;
Kamil, Shoaib ;
Williams, Samuel ;
Oliker, Leonid ;
Shalf, John ;
Yelick, Katherine .
SIAM REVIEW, 2009, 51 (01) :129-159
[10]   Multi-Jagged: A Scalable Parallel Spatial Partitioning Algorithm [J].
Deveci, Mehmet ;
Rajamanickam, Sivasankaran ;
Devine, Karen D. ;
Catalyurek, Umit V. .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016, 27 (03) :803-817