ON THE BOUNDEDNESS OF THE BILINEAR HILBERT TRANSFORM ALONG "NON-FLAT" SMOOTH CURVES

被引:22
作者
Lie, Victor [1 ,2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Romanian Acad, Inst Math, RO-70700 Bucharest, Romania
关键词
OSCILLATORY INTEGRALS; SINGULAR-INTEGRALS;
D O I
10.1353/ajm.2015.0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are proving L-2(R) x L-2(R) -> L-1(R) bounds for the bilinear Hilbert transform H-Gamma along curves Gamma = (t,-gamma(t)) with gamma being a smooth "non-flat" curve near zero and infinity.
引用
收藏
页码:313 / 363
页数:51
相关论文
共 22 条
[1]  
[Anonymous], 1993, PRINCETON MATH SER
[2]  
[Anonymous], 1991, Ondelettes et operateurs
[3]  
Christ M, 2005, DUKE MATH J, V130, P321
[4]   HILBERT-TRANSFORMS ALONG CURVES .1. NILPOTENT GROUPS [J].
CHRIST, M .
ANNALS OF MATHEMATICS, 1985, 122 (03) :575-596
[5]   Singular and maximal Radon transforms: Analysis and geometry [J].
Christ, M ;
Nagel, A ;
Stein, EM ;
Wainger, S .
ANNALS OF MATHEMATICS, 1999, 150 (02) :489-577
[6]   HILBERT-TRANSFORMS ALONG CURVES .2. A FLAT CASE [J].
CHRIST, M .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (04) :887-894
[7]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[8]   SINGULAR INTEGRALS WITH MIXED HOMOGENEITY [J].
FABES, EB ;
RIVIERE, NM .
STUDIA MATHEMATICA, 1966, 27 (01) :19-&
[9]  
Furstenberg H., 1990, The legacy of John von Neumann, V50, P43
[10]   A new proof of Szemeredi's theorem for arithmetic progressions of length four [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (03) :529-551