Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution

被引:130
作者
Peng, Yanhua [1 ]
Geng, Mengjie [1 ]
Yu, Jianqiang [1 ]
Zhang, Yan [1 ]
Tian, Fenghui [1 ]
Guo, Ya'nan [1 ]
Zhang, Dongsheng [1 ]
Yang, Xiaolong [1 ]
Li, Zhuo [1 ]
Li, Zixin [1 ]
Zhang, Shengyue [1 ]
机构
[1] Qingdao Univ, Coll Chem & Chem Engn, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfur vacancies; 2H@1T MoS2 phase-incorporation; Synergistic modulation; Electronic structure; Photocatalytic hydrogen evolution; OXYGEN VACANCIES; H-2; EVOLUTION; COCATALYST; SURFACE; EFFICIENCY; NANOSHEETS; SITES;
D O I
10.1016/j.apcatb.2021.120570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen evolution (PHE) is of great significance to pursue sustainable and clean fuel, however, it remains a great challenge due to the high recombination of photo-generated carriers and low efficiency of surface catalytic activity. Here, we discover the synergistic regulations of both structural and electronic benefits by introducing sulfur vacancies in a 1T-MoS2 nanosheets host to prompt the transformation of the surrounding 1TMoS(2) local lattice into a 2H phase, leading to the dramatically enhanced PHE activity. Multiple in situ spectroscopic and microscopic characterizations combined with theoretical calculations demonstrated that in-plane sulfur vacancies as active sites can activate the proton, while the 2H@1T-MoS2 phase-incorporation can effectively regulate the electronic structure and further improve the conductivity. Therefore, the optimized ZnIn2S4@MoS2 photocatalyst achieves a high PHE activity of 23,233 mu mol g(-1) with an apparent quantum yield (AQY) of similar to 5.09 %. This work provides a new design for improving the photocatalytic activity by synergistically structural and electronic modulations.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation [J].
Amano, Fumiaki ;
Nakata, Masashi ;
Yamamoto, Akira ;
Tanaka, Tsunehiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (12) :6467-6474
[2]   Vacancy-Induced Ferromagnetism of MoS2 Nanosheets [J].
Cai, Liang ;
He, Jingfu ;
Liu, Qinghua ;
Yao, Tao ;
Chen, Lin ;
Yan, Wensheng ;
Hu, Fengchun ;
Jiang, Yong ;
Zhao, Yidong ;
Hu, Tiandou ;
Sun, Zhihu ;
Wei, Shiqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) :2622-2627
[3]   Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups [J].
Chen, Sibo ;
Liao, Jihai ;
Zhou, Zining ;
Yang, Siyuan ;
Gao, Qiongzhi ;
Cai, Xin ;
Peng, Feng ;
Fang, Yueping ;
Zhang, Shengsen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 291
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   Fast calculation of electrostatics in crystals and large molecules [J].
Delley, B .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (15) :6107-6110
[6]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[7]   The vital role of surface Bronsted acid/base sites for the photocatalytic formation of free •OH radicals [J].
Ding, Liyong ;
Li, Meng ;
Zhao, Yukun ;
Zhang, Hongna ;
Shang, Jinting ;
Zhong, Junbo ;
Sheng, Hua ;
Chen, Chuncheng ;
Zhao, Jincai .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 266
[8]   Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation [J].
Feng, Shijia ;
Wang, Tuo ;
Liu, Bin ;
Hu, Congling ;
Li, Lulu ;
Zhao, Zhi-Jian ;
Gong, Jinlong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (05) :2044-2048
[9]   Hierarchical ZnIn2S4: A promising cocatalyst to boost visible-light-driven photocatalytic hydrogen evolution of In(OH)3 [J].
Geng, Mengjie ;
Peng, Yanhua ;
Zhang, Yan ;
Guo, Xinlei ;
Yu, Fengkai ;
Yang, Xiaolong ;
Xie, Guangwen ;
Don, Wensheng ;
Liu, Chunling ;
Li, Jifan ;
Yu, Jianqiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) :5787-5798
[10]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913