Paramagnetic 1H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes

被引:20
|
作者
Camponeschi, Francesca [1 ,2 ,3 ]
Muzzioli, Riccardo [1 ,2 ,3 ]
Ciofi-Baffoni, Simone [1 ,2 ,3 ]
Piccioli, Mario [1 ,2 ,3 ]
Banci, Lucia [1 ,2 ,3 ]
机构
[1] Univ Florence, Magnet Resonance Ctr CERM, Via Luigi Sacconi 6, I-50019 Florence, Italy
[2] Univ Florence, Dept Chem, Via Lastruccia 3, I-50019 Florence, Italy
[3] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, 1881 East Rd,3SCR4-3600,Unit 1907, Houston, TX 77054 USA
关键词
Lipoyl synthase; Iron-sulfur proteins; Enzyme mechanism; Electron transfer; Metallo enzyme; IRON-SULFUR PROTEIN; NUCLEAR-MAGNETIC-RESONANCE; COLI LIPOYL SYNTHASE; ESCHERICHIA-COLI; ELECTRONIC-STRUCTURE; CHROMATIUM-VINOSUM; 4FE-4S CLUSTER; INSERTION; FERREDOXINS; SUBSTRATE;
D O I
10.1016/j.jmb.2019.08.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron-sulfur clusters in radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Here we showed that H-1 NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals of metal-ligands is a powerful tool to monitor the binding of SAM and of the octanoyl-peptide substrate to the two [4Fe-4S] clusters of human lipoyl synthase. The paramagnetically shifted signals of the iron-ligands were specifically assigned to each of the two bound [4Fe-4S] clusters, and then used to examine the interaction of SAM and substrate molecules with each of the two [4Fe-4S] clusters of human lipoyl synthase. H-1 NMR spectroscopy can therefore contribute to the description of the catalityc mechanism of radical SAM enzymes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4514 / 4522
页数:9
相关论文
共 50 条
  • [1] Paramagnetic Intermediates Generated by Radical S-Adenosylmethionine (SAM) Enzymes
    Stich, Troy A.
    Myers, William K.
    Britt, R. David
    ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (08) : 2235 - 2243
  • [2] S-Adenosylmethionine radical enzymes
    Marsh, ENG
    Patwardhan, A
    Huhta, MS
    BIOORGANIC CHEMISTRY, 2004, 32 (05) : 326 - 340
  • [3] Radical S-Adenosylmethionine Enzymes
    Broderick, Joan B.
    Duffus, Benjamin R.
    Duschene, Kaitlin S.
    Shepard, Eric M.
    CHEMICAL REVIEWS, 2014, 114 (08) : 4229 - 4317
  • [4] Radical S-adenosylmethionine enzymes: Mechanism, control and function
    Challand, Martin R.
    Driesener, Rebecca C.
    Roach, Peter L.
    NATURAL PRODUCT REPORTS, 2011, 28 (10) : 1696 - 1721
  • [5] Snapshots of S-adenosylmethionine radical enzymes
    Drennan, Catherine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [6] The Catalytic Mechanism of the Class C Radical S-Adenosylmethionine Methyltransferase NosN
    Ding, Wei
    Li, Yongzhen
    Zhao, Junfeng
    Ji, Xinjian
    Mo, Tianlu
    Qianzhu, Haocheng
    Tu, Tao
    Deng, Zixin
    Yu, Yi
    Chen, Fener
    Zhang, Qi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (14) : 3857 - 3861
  • [7] Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes
    Zhang, Qi
    Liu, Wen
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (35) : 30245 - 30252
  • [8] Radical S-Adenosylmethionine Enzymes in Human Health and Disease
    Landgraf, Bradley J.
    McCarthy, Erin L.
    Booker, Squire J.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 485 - 514
  • [9] Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis
    Mahanta, Nilkamal
    Hudson, Graham A.
    Mitchell, Douglas A.
    BIOCHEMISTRY, 2017, 56 (40) : 5229 - 5244
  • [10] The structure and catalytic mechanism of the S-adenosylmethionine dependent radical enzyme biotin synthase
    Jarrett, J
    Wan, J
    Dotson, M
    Reyda, M
    Drennan, C
    Berkovitch, F
    Nicolet, Y
    FASEB JOURNAL, 2004, 18 (08): : C222 - C223