The infinitesimal 16th Hilbert problem in the quadratic case

被引:113
作者
Gavrilov, L [1 ]
机构
[1] Univ Toulouse 3, Lab emile Picard, UMR 5580, F-31062 Toulouse, France
关键词
D O I
10.1007/PL00005798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(x, y) be a real cubic polynomial with four distinct critical values (in a complex domain) and let X-H = H-y partial derivative/partial derivativex - H-x partial derivative/partial derivativey be the corresponding Hamiltonian vector field. We show that there is a neighborhood U of X-H in the space of all quadratic plane vector fields, such that any X epsilon U has at most two limit cycles.
引用
收藏
页码:449 / 497
页数:49
相关论文
共 31 条
[1]   MONODROMY GROUP OF UNFOLDING OF ISOLATED SINGULARITIES OF PLANE CURVES I [J].
ACAMPO, N .
MATHEMATISCHE ANNALEN, 1975, 213 (01) :1-32
[2]   SOME UNSOLVED PROBLEMS IN THE THEORY OF DIFFERENTIAL-EQUATIONS AND MATHEMATICAL PHYSICS [J].
ARNOLD, VI ;
VISHIK, MI ;
ILYASHENKO, YS ;
KALASHNIKOV, AS ;
KONDRATEV, VA ;
KRUZHKOV, SN ;
LANDIS, EM ;
MILLIONSHCHIKOV, VM ;
OLEINIK, OA ;
FILIPPOV, AF ;
SHUBIN, MA .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (04) :157-171
[3]   A SURVEY OF QUADRATIC SYSTEMS [J].
COPPEL, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1966, 2 (03) :293-&
[4]  
DULAC MH, 1923, B SOC MATH FRANCE, V51, P45
[5]   Successive derivatives of a first return map, application to the study of quadratic vector fields [J].
Francoise, JP .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :87-96
[6]   Petrov modules and zeros of Abelian integrals [J].
Gavrilov, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (08) :571-584
[7]  
GAVRILOV L, 1993, J MATH PURE APPL, V72, P213
[8]   Isochronicity of plane polynomial Hamiltonian systems [J].
Gavrilov, L .
NONLINEARITY, 1997, 10 (02) :433-448
[9]   Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields [J].
Gavrilov, L .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) :611-+
[10]  
HILBERT D, 1976, P S PURE MATH, V28, P1