Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry

被引:166
作者
King, David M.
Spencer, Joseph A., II
Liang, Xinhua
Hakim, Luis F.
Weimer, Alan W.
机构
[1] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA
[2] ALD NanoSolut Inc, Broomfield, CO 80020 USA
基金
美国国家科学基金会;
关键词
fluidized bed reactor; atomic layer deposition; particle coating; surface passivation; mass spectrometry;
D O I
10.1016/j.surfcoat.2007.05.002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A fluidized bed reactor (FBR) was designed and constructed for the delivery of reactive gases to particle surfaces to functionalize particles at large scale using atomic layer deposition (ALD). Nano- and micron-sized particles were effectively fluidized using an inert carrier gas assisted by mechanical agitation of the powder bed. The gas-solid contacting properties of fluidized bed reactors are beneficial for ALD surface reactions, while the frequent solid-solid collisions do not disrupt the self-limiting behavior of ALD reactant gases. Films can be deposited with monolayer control on individual particles of various substrate types, including metals, ceramics and polymers. In situ mass spectrometry was used for real-time monitoring of gaseous product(s) and reactants throughout the ALD reaction. Alumina (Al2O3) ALD on particles demonstrates the process control capabilities of this unique, scalable configuration. The applications of Al2O3 ALD films on particles are widely varying but typically involve core substrate surface passivation, which includes thermal oxidation resistance, photocatalytic activity mitigation and the fabrication of electrically insulative metal particles. Particle functionalization is achievable to nanoscale precision on a wide range of substrate types and sizes with minimal waste of costly ALD precursors and process time. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:9163 / 9171
页数:9
相关论文
共 70 条
[1]   Titanium isopropoxide as a precursor for atomic layer deposition:: characterization of titanium dioxide growth process [J].
Aarik, J ;
Aidla, A ;
Uustare, T ;
Ritala, M ;
Leskelä, M .
APPLIED SURFACE SCIENCE, 2000, 161 (3-4) :385-395
[2]   Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water [J].
Aarik, J ;
Aidla, A ;
Sammelselg, V ;
Uustare, T ;
Ritala, M ;
Leskelä, M .
THIN SOLID FILMS, 2000, 370 (1-2) :163-172
[3]   Carbon-nanotube-reinforeed polymer-derived ceramic composites [J].
An, LN ;
Xu, WX ;
Rajagopalan, S ;
Wang, CM ;
Wang, H ;
Fan, Y ;
Zhang, LG ;
Jiang, DP ;
Kapat, J ;
Chow, L ;
Guo, BH ;
Liang, J ;
Vaidyanathan, R .
ADVANCED MATERIALS, 2004, 16 (22) :2036-+
[4]  
ARNALDOS J, 1997, POWDER HANDLING PROC, V9, P315
[5]  
Baumeister P., 2004, OPTICAL COATING TECH, DOI DOI 10.1117/3.548071
[6]   In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques [J].
Du, X ;
Du, Y ;
George, SM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2005, 23 (04) :581-588
[7]   Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation [J].
Dukhin, S ;
Zhu, C ;
Dave, RN ;
Yu, Q .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2005, 114 :119-131
[8]   Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization [J].
Farmer, DB ;
Gordon, RG .
NANO LETTERS, 2006, 6 (04) :699-703
[9]   Atomic layer deposition of SiO2 films on BN particles using sequential surface reactions [J].
Ferguson, JD ;
Weimer, AW ;
George, SM .
CHEMISTRY OF MATERIALS, 2000, 12 (11) :3472-3480
[10]   Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles [J].
Ferguson, JD ;
Weimer, AW ;
George, SM .
THIN SOLID FILMS, 2000, 371 (1-2) :95-104