PLS classification of functional data

被引:100
|
作者
Preda, Cristian
Saporta, Gilbert
Leveder, Caroline
机构
[1] Univ Lille 2, Fac Med, Dept Stat, CERIM, F-59045 Lille, France
[2] Conservatoire Natl Arts & Metiers, CEDRIC, Chair Stat Appl, F-75141 Paris 03, France
[3] Danone Vitapole, F-91767 Palaiseau, France
关键词
PLS regression; functional data; linear discriminant analysis;
D O I
10.1007/s00180-007-0041-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial least squares (PLS) approach is proposed for linear discriminant analysis (LDA) when predictors are data of functional type (curves). Based on the equivalence between LDA and the multiple linear regression (binary response) and LDA and the canonical correlation analysis (more than two groups), the PLS regression on functional data is used to estimate the discriminant coefficient functions. A simulation study as well as an application to kneading data compare the PLS model results with those given by other methods.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 50 条
  • [1] PLS classification of functional data
    Cristian Preda
    Gilbert Saporta
    Caroline Lévéder
    Computational Statistics, 2007, 22 : 223 - 235
  • [2] Multi-class classification of biomechanical data: A functional LDA approach based on multi-class penalized functional PLS
    Aguilera-Morillo, M. Carmen
    Aguilera, Ana M.
    STATISTICAL MODELLING, 2020, 20 (06) : 592 - 616
  • [3] Multi-class classification of biomechanical data: A functional LDA approach based on multi-class penalized functional PLS
    Carmen Aguilera-Morillo, M.
    Aguilera, Ana M.
    STATISTICAL MODELLING, 2019,
  • [4] An Approach for PLS Regression Modeling of Functional Data
    Wang, Shengshuai
    Wang, Jie
    Wang, Huiwen
    Saporta, Gilbert
    PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 28 - 33
  • [5] PLS-Logistic Regression on Functional Data
    Wang, Jie
    Wang, Shengshuai
    Huang, Kefei
    Li, Ying
    PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 71 - 76
  • [6] PLS METHODS FOR FUNCTIONAL DATA
    Apostol, Costin
    Preda, Cristian
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 55 (06): : 431 - 445
  • [7] PLS Regression with Functional Predictor and Missing Data
    Preda, Cristian
    Saporta, Gilbert
    Mbarek, M. H. Ben Hadj
    PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 17 - 22
  • [8] Using basis expansions for estimating functional PLS regression Applications with chemometric data
    Aguilera, Ana M.
    Escabias, Manuel
    Preda, Cristian
    Saporta, Gilbert
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 104 (02) : 289 - 305
  • [9] Filtering-based approaches for functional data classification
    Jiang, Ci-Ren
    Chen, Lu-Hung
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (04):
  • [10] PLS and dimension reduction for classification
    Yushu Liu
    William Rayens
    Computational Statistics, 2007, 22 : 189 - 208