Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress

被引:111
|
作者
Zhang, Yujuan [1 ,2 ]
Li, Donghua [1 ]
Zhou, Rong [1 ]
Wang, Xiao [1 ]
Dossa, Komivi [1 ,3 ]
Wang, Linhai [1 ]
Zhang, Yanxin [1 ]
Yu, Jingyin [1 ]
Gong, Huihui [2 ]
Zhang, Xiurong [1 ]
You, Jun [1 ]
机构
[1] Chinese Acad Agr Sci, Key Lab Biol & Genet Improvement Oil Crops, Minist Agr & Rural Affairs, Oil Crops Res Inst, Wuhan 430062, Hubei, Peoples R China
[2] Shandong Acad Agr Sci, Cotton Res Ctr, Jinan 250100, Shandong, Peoples R China
[3] CERAAS, Route Khombole 3320, Thies, BP, Senegal
基金
中国国家自然科学基金;
关键词
Salt stress; Sesame; Transcriptome; Metabolome; Metabolic pathway; Amino acid; Raffinose; CONFERS ENHANCED TOLERANCE; NA+/H+ ANTIPORTER SOS1; WATER-STRESS; ARABIDOPSIS-THALIANA; GENE-EXPRESSION; ABIOTIC STRESS; ACID; SALINITY; DROUGHT; OVEREXPRESSION;
D O I
10.1186/s12870-019-1665-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundSoil salinity is one of the major serious factors that affect agricultural productivity of almost all crops worldwide, including the important oilseed crop sesame. In order to improve salinity resistance in sesame, it is crucial to understand the molecular mechanisms underlying the adaptive response to salinity stress.ResultsIn the present study, two contrasting sesame genotypes differing in salt tolerance were used to decipher the adaptive responses to salt stress based on morphological, transcriptome and metabolome characterizations. Morphological results indicated that under salt stress, the salt-tolerant (ST) genotype has enhanced capacity to withstand salinity stress, higher seed germination rate and plant survival rate, as well as better growth rate than the salt-sensitive genotype. Transcriptome analysis revealed strongly induced salt-responsive genes in sesame mainly related to amino acid metabolism, carbohydrate metabolism, biosynthesis of secondary metabolites, plant hormone signal transduction, and oxidation-reduction process. Especially, several pathways were preferably enriched with differentially expressed genes in ST genotype, including alanine, aspartate and glutamate metabolism, carotenoid biosynthesis, galactose metabolism, glycolysis/gluconeogenesis, glyoxylate and dicarboxylate metabolism, porphyrin and chlorophyll metabolism. Metabolome profiling under salt stress showed a higher accumulation degree of metabolites involved in stress tolerance in ST, and further highlighted that the amino acid metabolism, and sucrose and raffinose family oligosaccharides metabolism were enhanced in ST.ConclusionsThese findings suggest that the candidate genes and metabolites involved in crucial biological pathways may regulate salt tolerance of sesame, and increase our understanding of the molecular mechanisms underlying the adaptation of sesame to salt stress.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress
    Yujuan Zhang
    Donghua Li
    Rong Zhou
    Xiao Wang
    Komivi Dossa
    Linhai Wang
    Yanxin Zhang
    Jingyin Yu
    Huihui Gong
    Xiurong Zhang
    Jun You
    BMC Plant Biology, 19
  • [2] Comparative Transcriptome Analysis of Two Contrasting Chinese Cabbage (Brassica rapa L.) Genotypes Reveals That Ion Homeostasis Is a Crucial Biological Pathway Involved in the Rapid Adaptive Response to Salt Stress
    Li, Na
    Zhang, Zhihuan
    Chen, Zijing
    Cao, Bili
    Xu, Kun
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [3] Comparative Metabolome and Transcriptome Analyses Reveal Molecular Mechanisms Involved in the Responses of Two Carex rigescens Varieties to Salt Stress
    Wu, Yiming
    Zhu, Kai
    Wang, Chu
    Li, Yue
    Li, Mingna
    Sun, Yan
    PLANTS-BASEL, 2024, 13 (21):
  • [4] Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress
    Zhang, Yujuan
    Wei, Mengyuan
    Liu, Aili
    Zhou, Rong
    Li, Donghua
    Dossa, Komivi
    Wang, Linhai
    Zhang, Yanxin
    Gong, Huihui
    Zhang, Xiurong
    You, Jun
    JOURNAL OF PROTEOMICS, 2019, 201 : 73 - 83
  • [5] Combining transcriptome and metabolome analyses to reveal the response of maize roots to Pb stress
    Zhang, Xiaoxiang
    Zhao, Bin
    Ma, Xingye
    Jin, Xining
    Chen, Shilin
    Wang, Pingxi
    Guan, Zhongrong
    Wu, Xiangyuan
    Zhang, Huaisheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 217
  • [6] Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress
    Shi, Pibiao
    Gu, Minfeng
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [7] Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress
    Pibiao Shi
    Minfeng Gu
    BMC Plant Biology, 20
  • [8] Comparative Physiological and Transcriptomic Analyses of Two Contrasting Pepper Genotypes under Salt Stress Reveal Complex Salt Tolerance Mechanisms in Seedlings
    Zhang, Tao
    Sun, Kaile
    Chang, Xiaoke
    Ouyang, Zhaopeng
    Meng, Geng
    Han, Yanan
    Shen, Shunshan
    Yao, Qiuju
    Piao, Fengzhi
    Wang, Yong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [9] Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin
    Wang, Juan
    Li, Yingbo
    Wang, Yinxiao
    Du, Fengping
    Zhang, Yue
    Yin, Ming
    Zhao, Xiuqin
    Xu, Jianlong
    Yang, Yongqing
    Wang, Wensheng
    Fu, Binying
    ANTIOXIDANTS, 2022, 11 (10)
  • [10] A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf
    Tang, Meiqiong
    Li, Zengqiang
    Luo, Dengjie
    Wei, Fan
    Kashif, Muhammad Haneef
    Lu, Hai
    Hu, Yali
    Yue, Jiao
    Huang, Zhen
    Tan, Wenye
    Li, Ru
    Chen, Peng
    PLANT CELL REPORTS, 2021, 40 (01) : 223 - 236