Perovskite Cs3Bi2I9 Hexagonal Prisms with Ordered Geometry for Enhanced Photocatalytic Hydrogen Evolution

被引:28
|
作者
Li, Mingjie [1 ]
Xu, Shuang [1 ]
Wu, Liqin [1 ]
Tang, Huiling [1 ]
Zhou, Biao [1 ]
Xu, Jie [1 ]
Yang, Qi [1 ]
Zhou, Ting [1 ]
Qiu, Yongcai [1 ]
Chen, Guangxu [1 ]
Waterhouse, Geoffrey I. N. [2 ]
Yan, Keyou [1 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Solid Wastes Pollut Contro, Guangzhou 510000, Peoples R China
[2] Univ Auckland, Sch Chem Sci, Auckland 1142, New Zealand
来源
ACS ENERGY LETTERS | 2022年 / 7卷 / 10期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
H-2; EVOLUTION; EFFICIENT; CRYSTALS; FACETS;
D O I
10.1021/acsenergylett.2c01856
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis of metal halide perovskite/perovskitoid (MHP) photocatalysts with well-defined morphologies and facet-specific redox activity is technically challenging. Herein, using surfactants to control the arrangement of 0D facet-shared [Bi2I9](3-) dioctahedra building blocks, we successfully fabricated ordered perovskite Cs3Bi2I9 hexagonal prisms (CBI-HPs). Using Co2+ oxidation and PT4+ reduction as redox probes, photoexcited holes were shown to spatially migrate to the edge (100) facets while photoexcited electrons migrated to the (006) basal facets, respectively. Density functional theory revealed that the built-in potential of the facet junction between (100) and (006) facets was similar to 130 meV. Because of the well-separated redox facets, the photocatalytic hydrogen evolution rate of ordered CBI-HPs via hydroiodic acid splitting reached 1504.5 mu mol/h/g, which is 22.1 times that of a disordered CBI photocatalyst. This work guides the rational design of high-performance MHP photocatalysts for solar energy conversion and other applications.
引用
收藏
页码:3370 / 3377
页数:8
相关论文
共 50 条
  • [1] Incommensurate phase in the layered hexagonal crystal Cs3Bi2I9
    I. P. Aleksandrov
    A. F. Bovina
    O. A. Ageev
    A. A. Sukhovskii
    Physics of the Solid State, 1997, 39 : 991 - 994
  • [2] Incommensurate phase in the layered hexagonal crystal Cs3Bi2I9
    Aleksandrov, IP
    Bovina, AF
    Ageev, OA
    Sukhovskii, AA
    PHYSICS OF THE SOLID STATE, 1997, 39 (06) : 991 - 994
  • [3] CS3SB2I9 AND CS3BI2I9 WITH HEXAGONAL CS3CR2CL9 STRUCTURE TYPE
    CHABOT, B
    PARTHE, E
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1978, 34 (FEB): : 645 - 648
  • [4] The LT phase of Cs3Bi2I9
    Arakcheeva, AV
    Chapuis, G
    Meyer, M
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2001, 216 (04): : 199 - 205
  • [5] Anchoring lead-free halide Cs3Bi2I9 perovskite on UV100-TiO2 for enhanced photocatalytic performance
    Bresolin, Bianca-Maria
    Balayeva, Narmina O.
    Granone, Luis I.
    Dillert, Ralf
    Bahnemann, Detlef W.
    Sillanpaa, Mika
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 204
  • [6] Acoustooptic properties of Cs3Bi2I9 crystals
    Zamkov, AV
    Zaitsev, AI
    Parshikov, SA
    Sysoev, AM
    INORGANIC MATERIALS, 2001, 37 (01) : 82 - 83
  • [7] Photorechargeable Lead-Free Perovskite Lithium-Ion Batteries Using Hexagonal Cs3Bi2I9 Nanosheets
    Tewari, Neha
    Shivarudraiah, Sunil B.
    Halpert, Jonathan E.
    NANO LETTERS, 2021, 21 (13) : 5578 - 5585
  • [8] Ferroelectric phase transition in Cs3Bi2I9
    S. V. Mel’nikova
    A. I. Zaitsev
    Physics of the Solid State, 1997, 39 : 1652 - 1654
  • [9] Ferroelectric phase transition in Cs3Bi2I9
    Melnikova, SV
    Zaitsev, AI
    PHYSICS OF THE SOLID STATE, 1997, 39 (10) : 1652 - 1654
  • [10] Phase transitions of Cs3Sb2I9, Cs3Bi2I9, and Cs3Bi2Br9 crystals
    Ivanov, YN
    Sukhovskii, AA
    Lisin, VV
    Aleksandrova, IP
    INORGANIC MATERIALS, 2001, 37 (06) : 623 - 627