Laser beam-profile impression and target thickness impact on laser-accelerated protons

被引:31
作者
Schollmeier, M. [1 ,2 ]
Harres, K. [1 ,2 ]
Nuernberg, F. [1 ,2 ]
Blazevic, A. [2 ]
Audebert, P. [3 ]
Brambrink, E. [3 ]
Fernandez, J. C. [4 ]
Flippo, K. A. [4 ]
Gautier, D. C. [4 ]
Geissel, M. [5 ]
Hegelich, B. M. [4 ,6 ]
Schreiber, J. [6 ]
Roth, M. [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Gesell Schwerionenforsch mbH, Plasma Phys, D-64291 Darmstadt, Germany
[3] UPMC, Ecole Polytech, CNRS, CEA, F-91128 Palaiseau, France
[4] Los Alamos Natl Labs, Los Alamos, NM 87545 USA
[5] Sandia Natl Labs, Albuquerque, NM 87185 USA
[6] Univ Munich, Dept Phys, D-8046 Garching, Germany
关键词
D O I
10.1063/1.2912451
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 mu m Au) is only modified due to multiple small angle scattering. Thin targets (10 mu m) show large source sizes of over 100 mu m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons. (c) 2008 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal [J].
Akli, K. U. ;
Key, M. H. ;
Chung, H. K. ;
Hansen, S. B. ;
Freeman, R. R. ;
Chen, M. H. ;
Gregori, G. ;
Hatchett, S. ;
Hey, D. ;
Izumi, N. ;
King, J. ;
Kuba, J. ;
Norreys, P. ;
Mackinnon, A. J. ;
Murphy, C. D. ;
Snavely, R. ;
Stephens, R. B. ;
Stoeckel, C. ;
Theobald, W. ;
Zhang, B. .
PHYSICS OF PLASMAS, 2007, 14 (02)
[2]   Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets [J].
Antici, P. ;
Fuchs, J. ;
d'Humieres, E. ;
Lefebvre, E. ;
Borghesi, M. ;
Brambrink, E. ;
Cecchetti, C. A. ;
Gaillard, S. ;
Romagnani, L. ;
Sentoku, Y. ;
Toncian, T. ;
Willi, O. ;
Audebert, P. ;
Pepin, H. .
PHYSICS OF PLASMAS, 2007, 14 (03)
[3]   RANGE OF ELECTRONS AND POSITRONS IN MATTER [J].
BATRA, RK ;
SEHGAL, ML .
PHYSICAL REVIEW B, 1981, 23 (09) :4448-4454
[4]   MOLIERE THEORY OF MULTIPLE SCATTERING [J].
BETHE, HA .
PHYSICAL REVIEW, 1953, 89 (06) :1256-1266
[5]   Electric field detection in laser-plasma interaction experiments via the proton imaging technique [J].
Borghesi, M ;
Campbell, DH ;
Schiavi, A ;
Haines, MG ;
Willi, O ;
MacKinnon, AJ ;
Patel, P ;
Gizzi, LA ;
Galimberti, M ;
Clarke, RJ ;
Pegoraro, F ;
Ruhl, H ;
Bulanov, S .
PHYSICS OF PLASMAS, 2002, 9 (05) :2214-2220
[6]   Transverse characteristics of short-pulse laser-produced ion beams: A study of the acceleration dynamics [J].
Brambrink, E ;
Schreiber, J ;
Schlegel, T ;
Audebert, P ;
Cobble, J ;
Fuchs, J ;
Hegelich, M ;
Roth, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (15)
[7]   Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration [J].
Brambrink, E ;
Roth, M ;
Blazevic, A ;
Schlegel, T .
LASER AND PARTICLE BEAMS, 2006, 24 (01) :163-168
[8]   Active manipulation of the spatial energy distribution of laser-accelerated proton beams [J].
Carroll, D. C. ;
McKenna, P. ;
Lundh, O. ;
Lindau, F. ;
Wahlstrom, C. -G. ;
Bandyopadhyay, S. ;
Pepler, D. ;
Neely, D. ;
Kar, S. ;
Simpson, P. T. ;
Markey, K. ;
Zepf, M. ;
Bellei, C. ;
Evans, R. G. ;
Redaelli, R. ;
Batani, D. ;
Xu, M. H. ;
Li, Y. T. .
PHYSICAL REVIEW E, 2007, 76 (06)
[9]   Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids [J].
Clark, EL ;
Krushelnick, K ;
Davies, JR ;
Zepf, M ;
Tatarakis, M ;
Beg, FN ;
Machacek, A ;
Norreys, PA ;
Santala, MIK ;
Watts, I ;
Dangor, AE .
PHYSICAL REVIEW LETTERS, 2000, 84 (04) :670-673
[10]   Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator -: art. no. 204801 [J].
Cowan, TE ;
Fuchs, J ;
Ruhl, H ;
Kemp, A ;
Audebert, P ;
Roth, M ;
Stephens, R ;
Barton, I ;
Blazevic, A ;
Brambrink, E ;
Cobble, J ;
Fernández, J ;
Gauthier, JC ;
Geissel, M ;
Hegelich, M ;
Kaae, J ;
Karsch, S ;
Le Sage, GP ;
Letzring, S ;
Manclossi, M ;
Meyroneinc, S ;
Newkirk, A ;
Pépin, H ;
Renard-LeGalloudec, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (20) :204801-1