On fractional Choquard equations

被引:201
作者
d'Avenia, Pietro [1 ]
Siciliano, Gaetano [2 ]
Squassina, Marco [3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Sao Paulo, Dept Matemat, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
基金
巴西圣保罗研究基金会;
关键词
Fractional Laplacian; Choquard equation; existence; nonexistence; multiplicity; SCALAR FIELD-EQUATIONS; SCHRODINGER-EQUATIONS; EXISTENCE; DYNAMICS; UNIQUENESS;
D O I
10.1142/S0218202515500384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a class of nonlinear Schrodinger equations with a generalized Choquard nonlinearity and fractional diffusion. We obtain regularity, existence, nonexistence, symmetry as well as decays properties.
引用
收藏
页码:1447 / 1476
页数:30
相关论文
共 36 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]  
[Anonymous], S MATH
[3]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[4]  
Bellazzini J., ARXIV11032649
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   Soliton dynamics for the generalized Choquard equation [J].
Bonanno, Claudio ;
d'Avenia, Pietro ;
Ghimenti, Marco ;
Squassina, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) :180-199
[7]  
BONGERS A, 1980, Z ANGEW MATH MECH, V60, pT240
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]  
Cazenave T, 1996, Textos de Metodos Matematicos, V26
[10]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494