Influence of salt solution concentration on structural properties of ZnO nanorods grown by hydrothermal method

被引:12
作者
Al-Rasheedi, Asmaa [1 ,2 ]
Alonizan, N. H. [3 ]
Ansari, Akhlur Rahman [4 ]
Abdel-Daiem, A. M. [1 ,5 ]
Aida, M. S. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Phys Dept, Jeddah, Saudi Arabia
[2] Univ Jeddah, Coll Sci & Arts Khulais, Phys Dept, Jeddah 21921, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Phys, POB 1982, Dammam 31441, Saudi Arabia
[4] King Abdulaziz Univ, Ctr Nanotechnol, Jeddah, Saudi Arabia
[5] Zagazig Univ, Fac Sci, Phys Dept, Zagazig, Egypt
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2022年 / 128卷 / 09期
关键词
ZnO nanorods; Hydrothermal; Nanostructures; Photoluminescence; OPTICAL-PROPERTIES; THIN-FILMS; NANOSTRUCTURES;
D O I
10.1007/s00339-022-05937-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, ZnO nanorods have been grown, by hydrothermal method, on glass substrate coated with sputtered ZnO thin film seed layer. The effect of the zinc precursor salt concentration is varied to investigate its effect on the grown nanorod properties. X rays diffraction (XRD), scanning electron microscopy (SEM) technique have been used to analyze the nanorods crystalline structure and morphology. UV-visible optical transmittance and photoluminescence (PL) were used to characterize the nanorods' optical properties and electronic defects. The XRD analysis reveals the high texturation along the (002) direction indicating the well alignment of the grown nanorods confirmed by the SEM observation. Increasing the salt solution leads to ZnO nanorods with larger diameter and dense ZnO nanorods array. The nanorods optical transmission is characterized by a non-common linear decreasing with wavelength reduction. An explanation model of this behavior is addressed. The PL result analysis suggests that the synthetized ZnO nanorods are formed with Zn-termination polar face.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes [J].
Ahmad, Mashkoor ;
Shi Yingying ;
Nisar, Amjad ;
Sun, Hongyu ;
Shen, Wanci ;
Wei, Miao ;
Zhu, Jing .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7723-7729
[2]   Stable hydrophilic and underwater superoleophobic ZnO nanorod decorated nanofibrous membrane and its application in wastewater treatment [J].
Ahmed, Fayez U. ;
Upadhaya, Diliraj ;
Purkayastha, Debarun Dhar ;
Krishna, M. Ghanashyam .
JOURNAL OF MEMBRANE SCIENCE, 2022, 659
[3]   XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods [J].
Al-Gaashani, R. ;
Radiman, S. ;
Daud, A. R. ;
Tabet, N. ;
Al-Douri, Y. .
CERAMICS INTERNATIONAL, 2013, 39 (03) :2283-2292
[4]   Effect of ZnO seed layer annealing temperature on the growth of ZnO nanorods and its catalytic application [J].
Al-She'irey, Altaf Yahya ;
Balouch, Aamna ;
Mawarnis, Elvy Rahmi ;
Roza, Liszulfah ;
Abd Rahman, Mohd. Yusri ;
Abdullah ;
Mahar, Ali Muhammad .
OPTICAL MATERIALS, 2022, 131
[5]   Bulk transport measurements in ZnO: The effect of surface electron layers [J].
Allen, M. W. ;
Swartz, C. H. ;
Myers, T. H. ;
Veal, T. D. ;
McConville, C. F. ;
Durbin, S. M. .
PHYSICAL REVIEW B, 2010, 81 (07)
[6]  
Bagley B.G., 1974, Amorphous and liquid semiconductors
[7]  
C.W.-P. in surface science,, CHEM PHYS ZINC OXIDE
[8]   Determining the structure-antibacterial properties relationship and bacterial inactivation kinetics in different morphological-controlled ZnO nanoarchitectures for wastewater applications [J].
Chang, Jang Sen ;
Chong, Meng Nan ;
Ocon, Joey D. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06)
[9]   Hybrid ZnO NR/graphene structures as advanced optoelectronic devices with high transmittance [J].
Chung, Ren-Jei ;
Lin, Zih-Cian ;
Yang, Po-Kang ;
Lai, Kun-Yu ;
Jen, Shou-Feng ;
Chiu, Po-Wen .
NANOSCALE RESEARCH LETTERS, 2013, 8 :1-5
[10]   ZnO thin films design: the role of precursor molarity in the spray pyrolysis process [J].
de Godoy, M. P. F. ;
de Herval, L. K. S. ;
Cotta, A. A. C. ;
Onofre, Y. J. ;
Macedo, W. A. A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (20) :17269-17280