Large-Time Behavior of Solutions to an Inflow Problem for the Compressible Navier-Stokes-Korteweg Equations in the Half Space

被引:8
作者
Li, Yeping [1 ]
Chen, Zhengzheng [2 ,3 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[3] Anhui Univ, Ctr Pure Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes-Korteweg equations; Inflow problem; Boundary layer solution; Energy method; OPTIMAL DECAY-RATES; FLUID MODELS; ASYMPTOTIC STABILITY; RAREFACTION WAVE; GLOBAL EXISTENCE; STATIONARY SOLUTION; DIMENSIONAL SYSTEM; CAPILLARITY LIMIT; BOUNDARY-LAYER; P-SYSTEM;
D O I
10.1007/s00021-022-00736-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the large-time behavior of solutions to an inflow problem of the one-dimensional compressible Navier-Stokes-Korteweg equations, which models the compressible fluids with internal capillarity. Applying the center manifold theory, we firstly prove the existence of the boundary layer solution. Then making use of the energy method, the inequality of Poincare type and the spatial decay estimates for the boundary layer solution, we give the rigorous proofs of the stability results on the boundary layer solution under some smallness conditions. This is the first result on the stability of nonlinear wave patterns for the inflow problem of the compressible Navier-Stokes-Korteweg equations.
引用
收藏
页数:24
相关论文
共 43 条
[1]   VANISHING CAPILLARITY LIMIT OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE TO THE NAVIER-STOKES EQUATIONS [J].
Bian, Dongfen ;
Yao, Lei ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1633-1650
[2]  
Carr J., 1982, APPL CTR MANIFOLD TH
[3]   EXISTENCE OF A GLOBAL STRONG SOLUTION AND VANISHING CAPILLARITY-VISCOSITY LIMIT IN ONE DIMENSION FOR THE KORTEWEG SYSTEM [J].
Charve, Frederic ;
Haspot, Boris .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) :469-494
[4]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO AN IMPERMEABLE WALL PROBLEM OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE WITH DENSITY-DEPENDENT VISCOSITY AND CAPILLARITY [J].
Chen, Zhengzheng ;
Li, Yeping .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) :1434-1473
[5]   Asymptotic stability of viscous shock profiles for the 1D compressible Navier-Stokes-Korteweg system with boundary effect [J].
Chen, Zhengzheng ;
Li, Yeping ;
Sheng, Mengdi .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 16 (03) :225-251
[6]   Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data [J].
Chen, Zhengzheng ;
Chai, Xiaojuan ;
Dong, Boqing ;
Zhao, Huijiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :4376-4411
[7]   Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type [J].
Chen, Zhengzheng ;
He, Lin ;
Zhao, Huijiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) :1213-1234
[8]   Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type [J].
Chen, Zhengzheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :438-448
[9]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[10]   Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation [J].
Fan, Lili ;
Liu, Hongxia ;
Wang, Tao ;
Zhao, Huijiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) :3521-3553