A semiempirical approach to low-energy cosmic ray propagation in the diffuse interstellar medium

被引:0
|
作者
Franceschi, Riccardo [1 ,2 ]
Shore, Steven N. [1 ,3 ]
机构
[1] Univ Pisa, Dipartimento Fis Enrico Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[2] Max Planck Inst Astron MPIA, Konigstuhl 17, D-69117 Heidelberg, Germany
[3] Ist Nazl Fis Nucl, Sez Pisa 2013, Largo B Pontecorvo 3, I-56127 Pisa, Italy
关键词
cosmic rays; ISM; clouds; turbulence; methods; numerical; SHOCK ACCELERATION; FERMI ACCELERATION; MAGNETIC-FIELD; TURBULENCE; IONIZATION; PARTICLES;
D O I
10.1051/0004-6361/202243649
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. We investigate the ionization of the diffuse interstellar medium by cosmic rays by modeling their propagation along the wandering magnetic fields using a Monte Carlo method. We explore how particle trapping and second-order Fermi processes affect the ionization of the medium. Aims. We study how low-energy comic rays propagate in turbulent, translucent molecular clouds, and how they regulate the ionization and both lose and gain energy from the medium. Methods. As a test case, we used high spatial resolution (0.03 pc) CO maps of a well-studied high latitude translucent cloud, MBM 3, to model turbulence. The propagation problem is solved with a modified Monte Carlo procedure that includes trapping, energization, and ionization losses. Results. In the homogeneous medium, trapping and re-energization do not produce a significant effect. In the nonuniform medium, particles can be trapped for a long time inside the cloud. This modifies the cosmic ray distribution due to stochastic acceleration at the highest energies (similar to 100 MeV). At lower energies, the re-energization is too weak to produce an appreciable effect. The change in the energy distribution does not significantly affect the ionization losses, so ionization changes are due to trapping effects. Conclusions. Our Monte Carlo approach to cosmic ray propagation is an alternative method for solving the transport equation. This approach can be benchmarked to gas observations of molecular clouds. Using this approach, we demonstrate that stochastic Fermi acceleration and particle trapping occurs in inhomogeneous clouds, significantly enhancing their ionization.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] DIFFUSE GALACTIC LOW-ENERGY GAMMA-RAY CONTINUUM EMISSION
    SKIBO, JG
    RAMATY, R
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1993, 97 (01): : 145 - 148
  • [32] Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species
    Boschini, M. J.
    Della Torre, S.
    Gervasi, M.
    Grandi, D.
    Johannesson, G.
    Kachelriess, M.
    La Vacca, G.
    Masi, N.
    Moskalenko, I. V.
    Orlando, E.
    Ostapchenko, S. S.
    Pensotti, S.
    Porter, T. A.
    Quadrani, L.
    Rancoita, P. G.
    Rozza, D.
    Tacconi, M.
    ASTROPHYSICAL JOURNAL, 2017, 840 (02)
  • [33] Tracing low-energy cosmic-rays by charge exchange X-ray emission
    Tatischeff, V.
    ASTRONOMISCHE NACHRICHTEN, 2012, 333 (04) : 361 - 364
  • [34] The ionizing effect of low-energy cosmic rays from a class II object on its protoplanetary disc
    Rodgers-Lee, D.
    Taylor, A. M.
    Ray, T. P.
    Downes, T. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (01) : 26 - 38
  • [35] Cold diffuse interstellar medium of Magellanic Clouds: I. HD molecule and cosmic-ray ionization rate
    Kosenko, D. N.
    Balashev, S. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (02) : 2820 - 2833
  • [36] Nearly a Decade of Cosmic Ray Observations in the Very Local Interstellar Medium
    Rankin, Jamie Sue
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [37] Effects of various dissipation range onset models on the 26-day variations of low-energy galactic cosmic-ray electrons
    Engelbrecht, N. E.
    Burger, R. A.
    ADVANCES IN SPACE RESEARCH, 2010, 45 (08) : 1015 - 1025
  • [38] Spectrum and ionization rate of low-energy Galactic cosmic rays
    Nath, Biman B.
    Gupta, Nayantara
    Biermann, Peter L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (01) : L86 - L90
  • [39] Description of Solar Cosmic Ray Propagation in the Interplanetary Medium on the Basis of the Kinetic Equation
    Fedorov, Yu. I.
    Shakhov, B. A.
    KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2018, 34 (03) : 107 - 122
  • [40] Effects of solar modulation on the low-energy cosmic-ray antiproton/proton ratio
    Labrador, AW
    Mewaldt, RA
    ASTROPHYSICAL JOURNAL, 1997, 480 (01) : 371 - 376