Some results on the forced pendulum equation

被引:25
作者
Amster, Pablo [1 ]
Mariani, Maria Cristina [2 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
D O I
10.1016/j.na.2007.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the forced pendulum equation in the presence of friction, namely u '' + au' + sin u = f(t) with a epsilon R and f epsilon L-2(0, T). Using a shooting type argument, we prove the existence of at least two essentially different T-periodic solutions under appropriate conditions on T and f. We also prove the existence of solutions decaying with a fixed rate alpha epsilon (0, 1) by the Leray-Schauder theorem. Finally, we prove the existence of a bounded solution on [0, +infinity) using a diagonal argument. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1874 / 1880
页数:7
相关论文
共 8 条
[1]  
AMSTER P, 2003, B CLASSE SCI, P7
[2]  
[Anonymous], 1988, EXPO MATH
[3]  
[Anonymous], 1997, DIFFERENTIAL INTEGRA
[4]   ON PERIODIC-SOLUTIONS OF FORCED PENDULUM-LIKE EQUATIONS [J].
FOURNIER, G ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (03) :381-395
[5]   Forced vibrations with finite amplitudes [J].
Hamel, G .
MATHEMATISCHE ANNALEN, 1922, 86 :1-13
[6]  
MAWHIN J, 1982, LECT NOTES MATH, V964, P458
[7]   Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction [J].
Ortega, R ;
Serra, E ;
Tarallo, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2659-2665
[8]  
Ortega R., 1987, B CLASSE SCI AC ROY, V73, P405