Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries

被引:118
作者
Yin, Yameng [1 ]
Xiong, Fangyu [1 ]
Pei, Cunyuan [1 ]
Xu, Yanan [1 ]
An, Qinyou [1 ]
Tan, Shuangshuang [1 ]
Zhuang, Zechao [1 ]
Sheng, Jinzhi [1 ]
Li, Qidong [1 ]
Mai, Liqiang [1 ,2 ]
机构
[1] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Na3V2O2(PO4)(2)F; Spray-drying; Graphene skeleton; Microsphere; Sodium-ion battery; RATE CAPABILITY; ANODE MATERIALS; COMPOSITE; CARBON; NANOCOMPOSITES; MICROSPHERES;
D O I
10.1016/j.nanoen.2017.09.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na3V2O2(PO4)(2)F (NVOPF) is a promising cathode material for sodium-ion batteries (SIBs) due to its high working voltage and theoretical capacity. However, the electrochemical performance is strongly impeded by its poor intrinsic electronic conductivity. Herein, we integrated the high flexible graphene sheets with NVOPF through a spray-drying method to re-construct its structure. The NVOPF nanocrystalline particles are homogeneously embedded in the high electronic conductive graphene framework. As a cathode of SIBs, the robust NVOPF/rGO microsphere composite exhibits excellent electrochemical performance: high specific capacity (127.2 mA h g(-1)), long-term cycling stability (83.4% capacity retention at 30 C after 2000 cycles) and superior high rate performance (70.3 mA h g(-1) at 100 C). Furthermore, the Na+ insertion/extraction mechanism is also investigated by in-situ XRD and ex-situ HRTEM monitor technologies. This work demonstrates that the constructed 3D graphene skeleton serves as a high-efficient electronic conduction matrix and improves the electrochemical properties of electrode materials for advanced energy storage applications.
引用
收藏
页码:452 / 459
页数:8
相关论文
共 45 条
[1]   Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism [J].
An, Qinyou ;
Xiong, Fangyu ;
Wei, Qiulong ;
Sheng, Jinzhi ;
He, Liang ;
Ma, Dongling ;
Yao, Yan ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[2]   Macroscopic graphene membranes and their extraordinary stiffness [J].
Booth, Tim J. ;
Blake, Peter ;
Nair, Rahul R. ;
Jiang, Da ;
Hill, Ernie W. ;
Bangert, Ursel ;
Bleloch, Andrew ;
Gass, Mhairi ;
Novoselov, Kostya S. ;
Katsnelson, M. I. ;
Geim, A. K. .
NANO LETTERS, 2008, 8 (08) :2442-2446
[3]  
Chen H., 2013, ADV MATER, V20, P3557
[4]   Graphene quantum dots-shielded Na-3(VO)(2)(PO4)(2)F@C nanocuboids as robust cathode for Na-ion battery [J].
Deng, Gang ;
Chao, Dongliang ;
Guo, Yuwei ;
Chen, Zhen ;
Wang, Huanhuan ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ENERGY STORAGE MATERIALS, 2016, 5 :198-204
[5]   Structure and phase transitions of SnP2O7 [J].
Gover, RKB ;
Withers, ND ;
Allen, S ;
Withers, RL ;
Evans, JSO .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 166 (01) :42-48
[6]   A Green Approach to the Synthesis of Graphene Nanosheets [J].
Guo, Hui-Lin ;
Wang, Xian-Fei ;
Qian, Qing-Yun ;
Wang, Feng-Bin ;
Xia, Xing-Hua .
ACS NANO, 2009, 3 (09) :2653-2659
[7]   A Superior Na3V2(PO4)3-Based Nanocornposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries [J].
Guo, Jin-Zhi ;
Wu, Xing-Long ;
Wan, Fang ;
Wang, Jie ;
Zhang, Xiao-Hua ;
Wang, Rong-Shun .
CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (48) :17371-17378
[8]   A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J].
Han, Man Huon ;
Gonzalo, Elena ;
Singh, Gurpreet ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :81-102
[9]   A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries [J].
He, Yu-Shi ;
Gao, Pengfei ;
Chen, Jun ;
Yang, Xiaowei ;
Liao, Xiao-Zhen ;
Yang, Jun ;
Ma, Zi-Feng .
RSC ADVANCES, 2011, 1 (06) :958-960
[10]   Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity [J].
Hu, Lung-Hao ;
Wu, Feng-Yu ;
Lin, Cheng-Te ;
Khlobystov, Andrei N. ;
Li, Lain-Jong .
NATURE COMMUNICATIONS, 2013, 4