Dorronsoro's theorem in Heisenberg groups

被引:1
作者
Faessler, Katrin [1 ,2 ]
Orponen, Tuomas [3 ]
机构
[1] Univ Fribourg, Dept Math, Chemin Musee 23, CH-1700 Fribourg, Switzerland
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[3] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院; 瑞士国家科学基金会;
关键词
26B05 (primary); 26A33; 42B35 (secondary); MAXIMAL FUNCTIONS; SPACES;
D O I
10.1112/blms.12341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical versus horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.
引用
收藏
页码:472 / 488
页数:17
相关论文
共 17 条
  • [11] Fractional Maximal Functions in Metric Measure Spaces
    Heikkinen, Toni
    Lehrback, Juha
    Nuutinen, Juho
    Tuominen, Heli
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 : 147 - 162
  • [12] Hytonen T., 2016, DISCRETE ANAL, V37
  • [13] THE POINCARE INEQUALITY FOR VECTOR-FIELDS SATISFYING HORMANDER CONDITION
    JERISON, D
    [J]. DUKE MATHEMATICAL JOURNAL, 1986, 53 (02) : 503 - 523
  • [14] VERTICAL VERSUS HORIZONTAL POINCARE INEQUALITIES ON THE HEISENBERG GROUP
    Lafforgue, Vincent
    Naor, Assaf
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) : 309 - 339
  • [15] Lofstrom J., 1976, GRUNDLEHREN MATH WIS, V223
  • [16] Vertical perimeter versus horizontal perimeter
    Naor, Assaf
    Young, Robert
    [J]. ANNALS OF MATHEMATICS, 2018, 188 (01) : 171 - 279
  • [17] SOBOLEV REGULARITY OF THE BEURLING TRANSFORM ON PLANAR DOMAINS
    Prats, Marti
    [J]. PUBLICACIONS MATEMATIQUES, 2017, 61 (02) : 291 - 336