USING EPSILON HULLS TO CHARACTERIZE AND CLASSIFY TOTALLY DISCONNECTED SIERPINSKI RELATIVES

被引:3
作者
Taylor, T. D. [1 ]
机构
[1] St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sierpinski Relatives; Iterated Function Systems; Connectivity; Epsilon Hulls; CONNECTIVITY;
D O I
10.1142/S0218348X15500152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an investigation of the use of epsilon-hulls to characterize and classify the totally disconnected Sierpinski relatives. These fractals all have the same fractal dimension, and the same topologies, but the epsilon-hulls provide ways to distinguish between such relatives. Examples of specific relatives are presented to illustrate the theory.
引用
收藏
页数:11
相关论文
共 9 条
[1]  
Evertsz C. J., 1992, Chaos and fractals: new frontiers of science, V1992, P921
[2]   Barcodes: The persistent topology of data [J].
Ghrist, Robert .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (01) :61-75
[3]  
Mandelbrot B.B., 1982, FRACTAL GEOMETRY NAT
[4]   EXAMPLES OF USING BINARY CANTOR SETS TO STUDY THE CONNECTIVITY OF SIERPINSKI RELATIVES [J].
Taylor, T. D. ;
Hudson, C. ;
Anderson, A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2012, 20 (01) :61-75
[5]   CONNECTIVITY PROPERTIES OF SIERPINSKI RELATIVES [J].
Taylor, T. D. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (04) :481-506
[6]   A NEW CLASSIFICATION OF NON-OVERLAPPING SYMMETRIC BINARY FRACTAL TREES USING EPSILON HULLS [J].
Taylor, T. D. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2009, 17 (03) :365-384
[7]  
Taylor T. D., 2015, HOMEOMORPHI IN PRESS
[8]  
Taylor T. D., 2009, CONVEX FRACTAL GEOME, V84, P181
[9]   Computing persistent homology [J].
Zomorodian, A ;
Carlsson, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (02) :249-274