Quantum phase transitions

被引:560
作者
Vojta, M [1 ]
机构
[1] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
关键词
D O I
10.1088/0034-4885/66/12/R01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class Of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.
引用
收藏
页码:2069 / 2110
页数:42
相关论文
共 152 条
[1]   Quantum-critical theory of the spin fermion model and its application to cuprates: normal state analysis [J].
Abanov, A ;
Chubukov, AV ;
Schmalian, J .
ADVANCES IN PHYSICS, 2003, 52 (03) :119-218
[2]   Spin-fermion model near the quantum critical point: One-loop renormalization group results [J].
Abanov, A ;
Chubukov, AV .
PHYSICAL REVIEW LETTERS, 2000, 84 (24) :5608-5611
[3]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[4]   EXACT CONFORMAL-FIELD-THEORY RESULTS ON THE MULTICHANNEL KONDO EFFECT - SINGLE-FERMION GREEN-FUNCTION, SELF-ENERGY, AND RESISTIVITY [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW B, 1993, 48 (10) :7297-7321
[5]   CONFORMAL-FIELD-THEORY APPROACH TO THE 2-IMPURITY KONDO PROBLEM - COMPARISON WITH NUMERICAL RENORMALIZATION-GROUP RESULTS [J].
AFFLECK, I ;
LUDWIG, AWW ;
JONES, BA .
PHYSICAL REVIEW B, 1995, 52 (13) :9528-9546
[6]   CRITICAL-THEORY OF OVERSCREENED KONDO FIXED-POINTS [J].
AFFLECK, I ;
LUDWIG, AWW .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :641-696
[7]   THE KONDO EFFECT, CONFORMAL FIELD-THEORY AND FUSION RULES [J].
AFFLECK, I ;
LUDWIG, AWW .
NUCLEAR PHYSICS B, 1991, 352 (03) :849-862
[8]  
ALTSHULER BL, 1985, ELECT ELECT INTERACI
[9]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[10]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160