High-Throughput Atomic Layer Deposition of P-Type SnO Thin Film Transistors Using Tin(II)bis(tert-amyloxide)

被引:13
作者
Mameli, Alfredo [1 ]
Parish, James D. [2 ]
Dogan, Tamer [3 ]
Gelinck, Gerwin [1 ,3 ]
Snook, Michael W. [2 ]
Straiton, Andrew J. [2 ]
Johnson, Andrew L. [2 ]
Kronemeijer, Auke J. [1 ]
机构
[1] TNO Holst Ctr, High Tech Campus 31, NL-5656 AE Eindhoven, Netherlands
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[3] Eindhoven Univ Technol, Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
precursor; p-type transistors; spatial atomic layer deposition; tin monoxide (SnO); tin(II) alkoxide; LOW-TEMPERATURE; HOLE TRANSPORT; PHASE; IMPROVEMENT; STABILITY; MOBILITY; DEVICES; GROWTH;
D O I
10.1002/admi.202101278
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spatial atomic layer deposition (sALD) of p-type SnO is demonstrated using a novel liquid ALD precursor, tin(II)-bis(tert-amyloxide), Sn(TAA)(2), and H2O as the coreactant in a process which shows an increased deposition rate when compared to conventional temporal ALD. Compared to previously reported temporal ALD chemistries for the deposition of SnO, deposition rates of up to 19.5 times higher are obtained using Sn(TAA)(2) as a precursor in combination with atmospheric pressure sALD. Growths per cycle of 0.55 and 0.09 angstrom are measured at deposition temperatures of 100 and 210 degrees C, respectively. Common-gate thin film transistors (TFTs), fabricated using sALD with Sn(TAA)(2) result in linear mobilities of up to 0.4 cm(2) V-1 s(-1) and on/off-current ratios, I-On/I-Off > 10(2). The combination of enhanced precursor chemistry and improved deposition hardware enables unprecedently high deposition rate ALD of p-type SnO, representing a significant step toward high-throughput p-type TFT fabrication on large area and flexible substrates.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures [J].
Barros, Raquel ;
Saji, Kachirayil J. ;
Waerenborgh, Joao C. ;
Barquinha, Pedro ;
Pereira, Luis ;
Carlos, Emanuel ;
Martins, Rodrigo ;
Fortunato, Elvira .
NANOMATERIALS, 2019, 9 (03)
[2]   Record Mobility in Transparent p-Type Tin Monoxide Films and Devices by Phase Engineering [J].
Caraveo-Frescas, Jesus A. ;
Nayak, Pradipta K. ;
Al-Jawhari, Hala A. ;
Granato, Danilo B. ;
Schwingenschloegl, Udo ;
Alshareeft, Husam N. .
ACS NANO, 2013, 7 (06) :5160-5167
[3]   Atomic-layer-deposited SnO film using novel Sn(dmamb)2 precursor for p-channel thin film transistor [J].
Chae, Myeong Gil ;
Han, Seong Ho ;
Park, Bo Keun ;
Chung, Taek-Mo ;
Han, Jeong Hwan .
APPLIED SURFACE SCIENCE, 2021, 547
[4]   Complementary Oxide-Semiconductor-Based Circuits With n-Channel ZnO and p-Channel SnO Thin-Film Transistors [J].
Chiu, I-Chung ;
Li, Yun-Shiuan ;
Tu, Min-Sheng ;
Cheng, I-Chun .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (12) :1263-1265
[5]  
Dasgupta R., 2020, Adv. Organomet. Chem., P105, DOI [10.1016/bs.adomc.2020.04.001, DOI 10.1016/BS.ADOMC.2020.04.001]
[6]   Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances [J].
Fortunato, E. ;
Barquinha, P. ;
Martins, R. .
ADVANCED MATERIALS, 2012, 24 (22) :2945-2986
[7]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[8]   SNO FILMS AND THEIR OXIDATION TO SNO2 - RAMAN-SCATTERING, IR REFLECTIVITY AND X-RAY-DIFFRACTION STUDIES [J].
GEURTS, J ;
RAU, S ;
RICHTER, W ;
SCHMITTE, FJ .
THIN SOLID FILMS, 1984, 121 (03) :217-225
[9]  
Gregory G., 2016, ADV MATER INTERFACES, V3
[10]   Growth of p-Type Tin(II) Monoxide Thin Films by Atomic Layer Deposition from Bis(1-dimethylamino-2-methyl-2propoxy)tin and H2O [J].
Han, Jeong Hwan ;
Chung, Yoon Jang ;
Park, Bo Keun ;
Kim, Seong Keun ;
Kim, Hyo-Suk ;
Kim, Chang Gyoun ;
Chung, Taek-Mo .
CHEMISTRY OF MATERIALS, 2014, 26 (21) :6088-6091