Rechargeable Batteries of the Future-The State of the Art from a BATTERY 2030+Perspective

被引:248
作者
Fichtner, Maximilian [1 ,2 ]
Edstrom, Kristina [3 ,4 ]
Ayerbe, Elixabete [5 ]
Berecibar, Maitane [6 ]
Bhowmik, Arghya [7 ]
Castelli, Ivano E. [7 ]
Clark, Simon [8 ]
Dominko, Robert [4 ,9 ,10 ]
Erakca, Merve [1 ,11 ]
Franco, Alejandro A. [4 ,12 ,13 ,14 ]
Grimaud, Alexis [13 ,15 ]
Horstmann, Birger [1 ,16 ]
Latz, Arnulf [1 ,16 ,17 ]
Lorrmann, Henning [18 ]
Meeus, Marcel [19 ]
Narayan, Rekha [9 ]
Pammer, Frank [1 ]
Ruhland, Janna [20 ]
Stein, Helge [1 ,21 ]
Vegge, Tejs [7 ]
Weil, Marcel [1 ,11 ]
机构
[1] Helmholtz Inst Ulm HIU, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, POB 3640, D-76021 Karlsruhe, Germany
[3] Uppsala Univ, Dept Chem, Angstrom Labs, Box 531, S-75121 Uppsala, Sweden
[4] CNRS, FR 3104, ALISTORE European Res Inst, 15 Rue Baudelocque, F-80039 Amiens, France
[5] Basque Res & Technol Alliance BRTA, CIDETEC, Paseo Miramon 196, Donostia San Sebastian 20014, Spain
[6] Vrije Univ Brussel, MOBI Res Ctr, Battery Innovat Ctr, Pl Laan 2, B-1050 Ixelles, Belgium
[7] Tech Univ Denmark DTU, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
[8] New Energy Solut, SINTEF Ind, Sem Saelands Vei 12, N-7034 Trondheim, Norway
[9] Natl Inst Chem, Dept Chem Mat, Hajdrihova 19, Ljubljana 1000, Slovenia
[10] Univ Ljubljana, Fac Chem & Chem Technol, Vecna Pot 113, Ljubljana 1000, Slovenia
[11] KIT, Inst Technol Assessment & Syst Anal, ITAS, Karlsruhe, Germany
[12] Univ Picardie Jules Verne, CNRS, UMR 7314, Lab React & Chim Solides LRCS, 15 Rue Baudelocque, F-80039 Amiens, France
[13] CNRS, FR 3459, Reseau Stockage Electrochim Energie RS2E, 15 Rue Baudelocque, F-80039 Amiens, France
[14] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
[15] Coll France, Chaire Chim Solide & Energie, 11 Pl Marcelin Berthelot, F-75231 Paris, France
[16] German Aerosp Ctr DLR, Inst Engn Thermodynam, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
[17] Ulm Univ UUlm, Inst Electrochem, Albert Einstein Allee 47, D-89081 Ulm, Germany
[18] Fraunhofer Inst Silicate Res ISC, Neunerpl 2, D-97082 Wurzburg, Germany
[19] EMIRI Energy Mat Ind Res Initiat, Rue Ransbeek 310, B-1120 Brussels, Belgium
[20] Karlsruhe Inst Technol KIT, Inst Prod Sci Wbk, Kaiserstr 12, D-76131 Karlsruhe, Germany
[21] Karlsruhe Inst Technol KIT, Inst Phys Chem IPC, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
关键词
battery; 2030; battery recycling; machine learning; operando sensing; self-healing batteries; LI-ION BATTERIES; SOLID-ELECTROLYTE INTERPHASE; RESEARCH-AND-DEVELOPMENT; TRANSITION-METAL IONS; LITHIUM-ION; NEGATIVE ELECTRODES; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; LIQUID-METAL;
D O I
10.1002/aenm.202102904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of new batteries has historically been achieved through discovery and development cycles based on the intuition of the researcher, followed by experimental trial and error-often helped along by serendipitous breakthroughs. Meanwhile, it is evident that new strategies are needed to master the ever-growing complexity in the development of battery systems, and to fast-track the transfer of findings from the laboratory into commercially viable products. This review gives an overview over the future needs and the current state-of-the art of five research pillars of the European Large-Scale Research Initiative BATTERY 2030+, namely 1) Battery Interface Genome in combination with a Materials Acceleration Platform (BIG-MAP), progress toward the development of 2) self-healing battery materials, and methods for operando, 3) sensing to monitor battery health. These subjects are complemented by an overview over current and up-coming strategies to optimize 4) manufacturability of batteries and efforts toward development of a circular battery economy through implementation of 5) recyclability aspects in the design of the battery.
引用
收藏
页数:25
相关论文
共 334 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]  
Akkuser Oy, RECYCLING HIGH GRADE
[3]   Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J].
Amatucci, G ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :K31-K46
[4]   The elevated temperature performance of the LiMn2O4/C system:: failure and solutions [J].
Amatucci, G ;
Du Pasquier, A ;
Blyr, A ;
Zheng, T ;
Tarascon, JM .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :255-271
[5]   Multi-component background learning automates signal detection for spectroscopic data [J].
Ament, Sebastian E. ;
Stein, Helge S. ;
Guevarra, Dan ;
Zhou, Lan ;
Haber, Joel A. ;
Boyd, David A. ;
Umehara, Mitsutaro ;
Gregoire, John M. ;
Gomes, Carla P. .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[6]   Combinatorial materials science: What's new since Edison? [J].
Amis, EJ ;
Xiang, XD ;
Zhao, JC .
MRS BULLETIN, 2002, 27 (04) :295-297
[7]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[8]  
[Anonymous], ECHA registration dossier/d: tetramethylammonium hydrogen phthalate (CAS: 79723-02-7), Repeated dose toxicity: oral
[9]  
[Anonymous], ECHA CANDIDATE LIST
[10]  
[Anonymous], 2020, QUEST ANSW SUST BATT