In Vivo Expression of miR-32 Induces Proliferation in Prostate Epithelium

被引:17
作者
Latonen, Leena [1 ,2 ,3 ]
Scaravilli, Mauro [1 ,2 ,3 ]
Gillen, Andrew [1 ,2 ,3 ]
Hartikainen, Samuli [1 ,2 ,3 ]
Zhang, Fu-Ping [4 ]
Ruusuvuori, Pekka [1 ,2 ,6 ]
Kujala, Paula [3 ]
Poutanen, Matti [4 ,5 ]
Visakorpi, Tapio [1 ,2 ,3 ]
机构
[1] Univ Tampere, Prostate Canc Res Ctr, Fac Med & Life Sci, FI-33014 Tampere, Finland
[2] Univ Tampere, BioMediTech, FI-33014 Tampere, Finland
[3] Tampere Univ Hosp, Fimlab Labs, Tampere, Finland
[4] Univ Turku, Inst Biomed, Turku Ctr Dis Modeling, Turku, Finland
[5] Univ Turku, Inst Biomed, Dept Physiol, Turku, Finland
[6] Tampere Univ Technol, Pori, Finland
基金
芬兰科学院;
关键词
INTRAEPITHELIAL NEOPLASIA; MICRORNA EXPRESSION; PROFILE ANALYSIS; CONSENSUS REPORT; MOUSE MODELS; CANCER; PTEN; IDENTIFICATION; METAPLASIA; INHIBITOR;
D O I
10.1016/j.ajpath.2017.07.012
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
miRNAs are important regulators of gene expression and are often deregulated in cancer. We have previously shown that miR-32 is an androgen receptor-regulated miRNA overexpressed in castration-resistant prostate cancer and that miR-32 can improve prostate cancer cell growth in vitro. To assess the effects of miR-32 in vivo, we developed transgenic mice overexpressing miR-32 in the prostate. The study indicated that transgenic miR-32 expression increases replicative activity in the prostate epithelium. We further observed an aging-associated increase in the incidence of goblet cell metaplasia in the prostate epithelium. Furthermore, aged miR-32 transgenic mice exhibited metaplasia-associated prostatic intraepithelial neoplasia at a low frequency. When crossbred with mice lacking the other allele of tumor-suppressor Pten (miR-32xPten(+/-) mice), miR-32 expression increased both the incidence and the replicative activity of prostatic intraepithelial neoplasia Lesions in the dorsal prostate. The miR-32xPten(+/-) mice also demonstrated increased goblet cell metaplasia compared with Pten(+/-) mice. By performing a microarray analysis of mouse prostate tissue to screen downstream targets and effectors of miR-32, we identified RAC2 as a potential, and clinically relevant, target of miR-32. We also demonstrate down-regulation of several interesting, potentially prostate cancer-relevant genes (Spink1, Spink5, and Casp1) by miR-32 in the prostate tissue. The results demonstrate that miR-32 increases proliferation and promotes metapLastic transformation in mouse prostate epithelium, which may promote neoplastic alterations in the prostate.
引用
收藏
页码:2546 / 2557
页数:12
相关论文
共 52 条
[1]   Systematic Identification of MicroRNAs That Impact on Proliferation of Prostate Cancer Cells and Display Changed Expression in Tumor Tissue [J].
Aakula, Anna ;
Kohonen, Pekka ;
Leivonen, Suvi-Katri ;
Makela, Rami ;
Hintsanen, Petteri ;
Mpindi, John Patrick ;
Martens-Uzunova, Elena ;
Aittokallio, Tero ;
Jenster, Guido ;
Perala, Merja ;
Kallioniemi, Olli ;
Ostling, Paivi .
EUROPEAN UROLOGY, 2016, 69 (06) :1120-1128
[2]   Genomic profiling of MicroRNA and messenger RNA reveals deregulated MicroRNA expression in prostate cancer [J].
Ambs, Stefan ;
Prueitt, Robyn L. ;
Yi, Ming ;
Hudson, Robert S. ;
Howe, Tiffany M. ;
Petrocca, Fabio ;
Wallace, Tiffany A. ;
Liu, Chang-Gong ;
Volinia, Stefano ;
Calin, George A. ;
Yfantis, Harris G. ;
Stephens, Robert M. ;
Croce, Carlo M. .
CANCER RESEARCH, 2008, 68 (15) :6162-6170
[3]  
[Anonymous], 2018, ANTI-CANCER DRUG, DOI [DOI 10.3322/caac.20115, DOI 10.1097/CAD.0000000000000617]
[4]   Therapeutic Targeting of SPINK1-Positive Prostate Cancer [J].
Ateeq, Bushra ;
Tomlins, Scott A. ;
Laxman, Bharathi ;
Asangani, Irfan A. ;
Cao, Qi ;
Cao, Xuhong ;
Li, Yong ;
Wang, Xiaoju ;
Feng, Felix Y. ;
Pienta, Kenneth J. ;
Varambally, Sooryanarayana ;
Chinnaiyan, Arul M. .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (72)
[5]   MicroRNA in Prostate, Bladder, and Kidney Cancer: A Systematic Review [J].
Catto, James W. F. ;
Alcaraz, Antonio ;
Bjartell, Anders S. ;
White, Ralph De Vere ;
Evans, Christopher P. ;
Fussel, Susanne ;
Hamdy, Freddie C. ;
Kallioniemi, Olli ;
Mengual, Lourdes ;
Schlomm, Thorsten ;
Visakorpi, Tapio .
EUROPEAN UROLOGY, 2011, 59 (05) :671-681
[6]   The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice [J].
Chen, Mei-Ling ;
Xu, Pei-Zhang ;
Peng, Xiao-Ding ;
Chen, William S. ;
Guzman, Grace ;
Yang, Ximing ;
Di Cristofano, Antonio ;
Pandolfi, Pier Paolo ;
Hay, Nissim .
GENES & DEVELOPMENT, 2006, 20 (12) :1569-1574
[7]   MYC Cooperates with AKT in Prostate Tumorigenesis and Alters Sensitivity to mTOR Inhibitors [J].
Clegg, Nicola J. ;
Couto, Suzana S. ;
Wongvipat, John ;
Hieronymus, Haley ;
Carver, Brett S. ;
Taylor, Barry S. ;
Ellwood-Yen, Katharine ;
Gerald, William L. ;
Sander, Chris ;
Sawyers, Charles L. .
PLOS ONE, 2011, 6 (03)
[8]   Pten is essential for embryonic development and tumour suppression [J].
Di Cristofano, A ;
Pesce, B ;
Cordon-Cardo, C ;
Pandolfi, PP .
NATURE GENETICS, 1998, 19 (04) :348-355
[9]   Roles of small RNAs in tumor formation [J].
Di Leva, Gianpiero ;
Croce, Carlo M. .
TRENDS IN MOLECULAR MEDICINE, 2010, 16 (06) :257-267
[10]   The Potential of MicroRNAs as Prostate Cancer Biomarkers [J].
Fabris, Linda ;
Ceder, Yvonne ;
Chinnaiyan, Arul M. ;
Jenster, Guido W. ;
Sorensen, Karina D. ;
Tomlins, Scott ;
Visakorpi, Tapio ;
Calin, George A. .
EUROPEAN UROLOGY, 2016, 70 (02) :312-322