Thermal conductance of one-dimensional disordered harmonic chains

被引:8
|
作者
Ash, Biswarup [1 ]
Amir, Ariel [2 ]
Bar-Sinai, Yohai [2 ]
Oreg, Yuval [1 ]
Imry, Yoseph [1 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
HEAT-CONDUCTION; FLOW;
D O I
10.1103/PhysRevB.101.121403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study heat conduction mediated by longitudinal phonons in one-dimensional disordered harmonic chains. Using scaling properties of the phonon density of states and localization in disordered systems, we find nontrivial scaling of the thermal conductance with the system size. Our findings are corroborated by extensive numerical analysis. We show that, suprisingly, the thermal conductance of a system with strong disorder, characterized by a "heavy-tailed" probability distribution, and with large impedance mismatch between the bath and the system, scales normally with the system size, i.e., in a manner consistent with Fourier's law. We identify a dimensionless scaling parameter, related to the temperature scale and the localization length of the phonons, through which the thermal conductance for different models of disorder and different temperatures follows a universal behavior.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Thermal equilibration in a one-dimensional damped harmonic crystal
    Gavrilov, S. N.
    Krivtsov, A. M.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [32] Thermal echo in a finite one-dimensional harmonic crystal
    Murachev, A. S.
    Krivtsov, A. M.
    Tsvetkov, D., V
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (09)
  • [33] ASYMPTOTICS OF A THERMAL WAVE IN ONE-DIMENSIONAL HARMONIC CRYSTAL
    Krivtsov, A. M.
    Podolskaya, E. A.
    Shubina, V. Yu
    MATERIALS PHYSICS AND MECHANICS, 2019, 42 (06): : 837 - 845
  • [34] Reply to "Comment on 'Suppression of conductance fluctuations in short one-dimensional disordered conductors'"
    Pradhan, P
    Kumar, N
    PHYSICAL REVIEW B, 1998, 57 (07): : 4180 - 4180
  • [35] In-plane thermal conductance measurement of one-dimensional nanostructures
    Hsiao-Fang Lee
    Benedict A. Samuel
    M. A. Haque
    Journal of Thermal Analysis and Calorimetry, 2010, 99 : 495 - 500
  • [36] Reply to Comment on `Suppression of conductance fluctuations in short one-dimensional disordered conductors'
    Pradhan, P.
    Kumar, N.
    Physical Review B: Condensed Matter, 57 (07):
  • [37] In-plane thermal conductance measurement of one-dimensional nanostructures
    Lee, Hsiao-Fang
    Samuel, Benedict A.
    Haque, M. A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 99 (02) : 495 - 500
  • [38] EFFECT OF COUPLING TO THE LEADS ON THE CONDUCTANCE FLUCTUATIONS IN ONE-DIMENSIONAL DISORDERED, MESOSCOPIC SYSTEMS
    SEN, AK
    GANGOPADHYAY, S
    JOURNAL DE PHYSIQUE I, 1994, 4 (10): : 1373 - 1378
  • [39] Quantized phononic thermal conductance for one-dimensional ballistic transport
    Wang, W
    Yi, XX
    CHINESE JOURNAL OF PHYSICS, 2003, 41 (01) : 92 - 99
  • [40] Conductance distributions of one-dimensional disordered wires at finite temperature and bias voltage
    Foieri, Federico
    Jose Sanchez, Maria
    Arrachea, Liliana
    Gopar, Victor A.
    PHYSICAL REVIEW B, 2006, 74 (16)