Temporal Encoding and Multispike Learning Framework for Efficient Recognition of Visual Patterns

被引:10
|
作者
Yu, Qiang [1 ]
Song, Shiming [1 ]
Ma, Chenxiang [1 ]
Wei, Jianguo [2 ,3 ]
Chen, Shengyong [4 ]
Tan, Kay Chen [5 ,6 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Cognit Comp & Applicat, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[3] Qinghai Univ Nationalities, Sch Comp Sci, Xining 810007, Qinghai, Peoples R China
[4] Tianjin Univ Technol, Sch Comp Sci & Engn, Tianjin 300072, Peoples R China
[5] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[6] City Univ Hong Kong, Shenzhen Res Inst, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Encoding; Neurons; Image coding; Task analysis; Visualization; Feature extraction; Computational modeling; Image classification; multispike learning; neuromorphic computing; spiking neural networks (SNNs); temporal encoding; SPIKING NEURONS; NETWORK; ARCHITECTURE;
D O I
10.1109/TNNLS.2021.3052804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biological systems under a parallel and spike-based computation endow individuals with abilities to have prompt and reliable responses to different stimuli. Spiking neural networks (SNNs) have thus been developed to emulate their efficiency and to explore principles of spike-based processing. However, the design of a biologically plausible and efficient SNN for image classification still remains as a challenging task. Previous efforts can be generally clustered into two major categories in terms of coding schemes being employed: rate and temporal. The rate-based schemes suffer inefficiency, whereas the temporal-based ones typically end with a relatively poor performance in accuracy. It is intriguing and important to develop an SNN with both efficiency and efficacy being considered. In this article, we focus on the temporal-based approaches in a way to advance their accuracy performance by a great margin while keeping the efficiency on the other hand. A new temporal-based framework integrated with the multispike learning is developed for efficient recognition of visual patterns. Different approaches of encoding and learning under our framework are evaluated with the MNIST and Fashion-MNIST data sets. Experimental results demonstrate the efficient and effective performance of our temporal-based approaches across a variety of conditions, improving accuracies to higher levels that are even comparable to rate-based ones but importantly with a lighter network structure and far less number of spikes. This article attempts to extend the advanced multispike learning to the challenging task of image recognition and bring state of the arts in temporal-based approaches to a novel level. The experimental results could be potentially favorable to low-power and high-speed requirements in the field of artificial intelligence and contribute to attract more efforts toward brain-like computing.
引用
收藏
页码:3387 / 3399
页数:13
相关论文
共 50 条
  • [21] STGL: Spatial-Temporal Graph Representation and Learning for Visual Tracking
    Jiang, Bo
    Zhang, Yuan
    Luo, Bin
    Cao, Xiaochun
    Tang, Jin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2162 - 2171
  • [22] Effective multispike learning in a spiking neural network with a new temporal feedback backpropagation for breast cancer detection
    Heidarian, Mehdi
    Karimi, Gholamreza
    Payandeh, Mehrdad
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [23] Neural Encoding for Human Visual Cortex With Deep Neural Networks Learning "What" and "Where"
    Wang, Haibao
    Huang, Lijie
    Du, Changde
    Li, Dan
    Wang, Bo
    He, Huiguang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (04) : 827 - 840
  • [24] Partial Visual-Tactile Fused Learning for Robotic Object Recognition
    Zhang, Tao
    Cong, Yang
    Dong, Jiahua
    Hou, Dongdong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (07): : 4349 - 4361
  • [25] High-Performance Visual Tracking With Extreme Learning Machine Framework
    Deng, Chenwei
    Han, Yuqi
    Zhao, Baojun
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (06) : 2781 - 2792
  • [26] Rapid Feedforward Computation by Temporal Encoding and Learning With Spiking Neurons
    Yu, Qiang
    Tang, Huajin
    Tan, Kay Chen
    Li, Haizhou
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (10) : 1539 - 1552
  • [27] Learning optimal features for visual pattern recognition
    Labusch, Kai
    Siewert, Udo
    Martinetz, Thomas
    Barth, Erhardt
    HUMAN VISION AND ELECTRONIC IMAGING XII, 2007, 6492
  • [28] Encoding of Visual Objects in the Human Medial Temporal Lobe
    Wang, Yue
    Cao, Runnan
    Wang, Shuo
    JOURNAL OF NEUROSCIENCE, 2024, 44 (16)
  • [29] SLPR: A Deep Learning Based Chinese Ship License Plate Recognition Framework
    Liu, Dekang
    Cao, Jiuwen
    Wang, Tianlei
    Wu, Huahua
    Wang, Jianzhong
    Tian, Jiangmin
    Xu, Fangyong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23831 - 23843
  • [30] An efficient and low power deep learning framework for image recognition on mobile devices
    Guoqing Liu
    Xiaoming Dai
    Xinyi Liu
    Meiyan Chen
    Zeyu Huang
    Tianzhang Xing
    CCF Transactions on Pervasive Computing and Interaction, 2022, 4 : 1 - 12