A Geometrical Interpretation of an Alternative Formula for the Sample Covariance

被引:3
作者
Hayes, Kevin [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Correlation coefficient; Digit preference; Method comparison study; Pairwise differences; Principal axis; Rotation; CORRELATION-COEFFICIENT;
D O I
10.1198/tast.2011.09067
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a previous issue of The American Statistician, Heffernan reexpressed the classical formula for the sample variance as a sum of squared pairwise differences. This result extends to the sample covariance and has appealing geometrical interpretations.
引用
收藏
页码:110 / 112
页数:3
相关论文
共 10 条
[1]  
BLAND JM, 1986, LANCET, V43, P234
[2]  
Falk R., 1997, J Stat Ed, V5
[3]  
Galton F., 1886, J. Anthropol. Inst. G. B. Irel, V15, P246, DOI 10.2307/2841583
[4]   NEW MEASURES OF SPREAD AND A SIMPLER FORMULA FOR THE NORMAL-DISTRIBUTION [J].
HEFFERNAN, PM .
AMERICAN STATISTICIAN, 1988, 42 (02) :100-102
[5]  
Lee Alan James, 1990, U-statistics: Theory and practice, DOI 10.1201/9780203734520
[7]   Correlation, regression lines, and moments of inertia [J].
Nelsen, RB .
AMERICAN STATISTICIAN, 1998, 52 (04) :343-345
[8]   A note on normal correlation [J].
Pitman, EJG .
BIOMETRIKA, 1939, 31 :9-12
[9]   13 WAYS TO LOOK AT THE CORRELATION-COEFFICIENT [J].
RODGERS, JL ;
NICEWANDER, WA .
AMERICAN STATISTICIAN, 1988, 42 (01) :59-66
[10]   A 14th way to look at a correlation coefficient: Correlation as the proportion of matches [J].
Rovine, MJ ;
vonEye, A .
AMERICAN STATISTICIAN, 1997, 51 (01) :42-46