Characterization of generalized Jordan *-left derivations on real nest algebras

被引:5
|
作者
Zhu, J [1 ]
Xiong, CP [1 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
real nest algebra; generalized Jordan *-left derivation; *-left preserving kernel-into-range mapping; generalized inner *-left derivation;
D O I
10.1016/j.laa.2005.02.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a real nest algebra of B(H), where H is a real and separable Hilbert space. We show that the following conditions are equivalent for a weak topology continuous linear map phi : A -> B (H): (1) phi is a *-left preserving kernel-into-range mapping, i.e., phi(T)(ker(T)) C ran(T*) for any T is an element of A. (2) phi is a generalized *-left inner derivations, i.e., phi(T) = T*A + BT for some A, B is an element of B(H). (3) phi is a generalized Jordan *-left derivations, i.e., phi(T-2) = T*phi(T) + phi(T)T - T*phi(I) T for any T c V. (4) phi is a *-left 1-preserving kernel-into-range mapping, i.e., phi(T)(ker(T)) subset of ran(T*) for any rank one operator T is an element of A. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:325 / 344
页数:20
相关论文
共 50 条