Development and Evaluation of a Wearable Lower Limb Rehabilitation Robot

被引:28
作者
Li, Wanting [1 ]
Liu, Keping [1 ]
Li, Chunxu [2 ]
Sun, Zhongbo [1 ]
Liu, Shui [3 ]
Gu, Jian [1 ]
机构
[1] Changchun Univ Technol, Dept Control Engn, Changchun 130012, Peoples R China
[2] Univ Plymouth, Ctr Robot & Neural Syst, Plymouth PL4 8AA, Devon, England
[3] Changchun Univ Technol, Sch Mechatron Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Wearable rehabilitation robot; Biomechanics; Robot mechanism design; Virtual analysis; DESIGN; OPTIMIZATION; DEVICE;
D O I
10.1007/s42235-022-00172-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a rigid-flexible coupling wearable exoskeleton robot for lower limb, which is designed in light of gait biomechanics and beneficial for low limb movement disorders by implementing gait training. The rationality of the proposed mechanism is shown with the implementation of the dynamic simulation through MSC ADAMS. For the purposes of lightweight, the exoskeleton mechanism is optimized through finite element analysis. It can be concluded from performance evaluation experiment, the mechanism has certain advantages over existing exoskeleton robots, namely, comfortable, lightweight, low cost, which can be utilized for rehabilitation training in medical institutions or as a daily-walking ancillary equipment for patients.
引用
收藏
页码:688 / 699
页数:12
相关论文
共 29 条
[1]   Lokomat Robotic-Assisted Versus Overground Training Within 3 to 6 Months of Incomplete Spinal Cord Lesion: Randomized Controlled Trial [J].
Alcobendas-Maestro, Monica ;
Esclarin-Ruz, Ana ;
Casado-Lopez, Rosa M. ;
Munoz-Gonzalez, Alejandro ;
Perez-Mateos, Guillermo ;
Gonzalez-Valdizan, Esteban ;
Martin, Jose Luis R. .
NEUROREHABILITATION AND NEURAL REPAIR, 2012, 26 (09) :1058-1063
[2]   Design and Control of an Assistive Device for the Study of the Post-stroke Sit-To-Stand Movement [J].
Allouche, Benyamine ;
Saade, Amal ;
Dequidt, Antoine ;
Vermeiren, Laurent ;
Remy-Neris, Olivier .
JOURNAL OF BIONIC ENGINEERING, 2018, 15 (04) :647-660
[3]  
[Anonymous], 2013, Measuring Walking: A Handbook of Clinical Gait Analysis
[4]   Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker [J].
Bayon, C. ;
Ramirez, O. ;
Serrano, J. I. ;
Del Castillo, M. D. ;
Perez-Somarriba, A. ;
Belda-Lois, J. M. ;
Martinez-Caballero, I. ;
Lerma-Lara, S. ;
Cifuentes, C. ;
Frizera, A. ;
Rocon, E. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 91 :101-114
[5]  
Bernhardt J, 2020, LANCET, V396, P1452, DOI 10.1016/S0140-6736(20)31313-1
[6]   CUBE, a Cable-driven Device for Limb Rehabilitation [J].
Cafolla, Daniele ;
Russo, Matteo ;
Carbone, Giuseppe .
JOURNAL OF BIONIC ENGINEERING, 2019, 16 (03) :492-502
[7]   Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation [J].
Chen, Gong ;
Qi, Peng ;
Guo, Zhao ;
Yu, Haoyong .
MECHANISM AND MACHINE THEORY, 2016, 103 :51-64
[8]   Sensory retraining of the leg after stroke: systematic review and meta-analysis [J].
Chia, Fenny S. F. ;
Kuys, Suzanne ;
Choy, Nancy Low .
CLINICAL REHABILITATION, 2019, 33 (06) :964-979
[9]  
Ding Y, 2014, IEEE INT CONF ROBOT, P1327, DOI 10.1109/ICRA.2014.6907024
[10]   Updated Approach to Stroke Rehabilitation [J].
Lindsay, Leroy R. ;
Thompson, Diane A. ;
O'Dell, Michael W. .
MEDICAL CLINICS OF NORTH AMERICA, 2020, 104 (02) :199-+