Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer's disease

被引:660
作者
Ebneth, A [1 ]
Godemann, R [1 ]
Stamer, K [1 ]
Illenberger, S [1 ]
Trinczek, B [1 ]
Mandelkow, EM [1 ]
Mandelkow, E [1 ]
机构
[1] Max Planck Unit Struct Mol Biol, D-22607 Hamburg, Germany
关键词
mitochondria; transport; endoplasmic reticulum; exocytosis; Alzheimer's disease;
D O I
10.1083/jcb.143.3.777
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The neuronal microtubule-associated protein tau plays an important role in establishing cell polarity by stabilizing axonal microtubules that serve as tracks for motor-protein-driven transport processes. To investigate the role of tau in intracellular transport, we studied the effects of tau expression in stably transfected CHO cells and differentiated neuroblastoma N2a cells. Tau causes a change in cell shape, retards cell growth, and dramatically alters the distribution of various organelles, known to be transported via microtubule-dependent motor proteins. Mitochondria fail to be transported to peripheral cell compartments and cluster in the vicinity of the microtubule-organizing center. The endoplasmic reticulum becomes less dense and no longer extends to the cell periphery. In differentiated N2a cells, the overexpression of tau leads to the disappearance of mitochondria from the neurites. These effects are caused by tau's binding to microtubules and slowing down intracellular transport by preferential impairment of plus-end-directed transport mediated by kinesin-like motor proteins. Since in Alzheimer's disease tau protein is elevated and mislocalized, these observations point to a possible cause for the gradual degeneration of neurons.
引用
收藏
页码:777 / 794
页数:18
相关论文
共 98 条
[1]  
ALLAN V, 1994, J CELL SCI, V107, P1885
[2]   MICROTUBULE DYNAMICS IN AXONS AND DENDRITES [J].
BAAS, PW ;
SLAUGHTER, T ;
BROWN, A ;
BLACK, MM .
JOURNAL OF NEUROSCIENCE RESEARCH, 1991, 30 (01) :134-153
[3]   STABLE EXPRESSION OF HETEROLOGOUS MICROTUBULE-ASSOCIATED PROTEINS (MAPS) IN CHINESE-HAMSTER OVARY CELLS - EVIDENCE FOR DIFFERING ROLES OF MAPS IN MICROTUBULE ORGANIZATION [J].
BARLOW, S ;
GONZALEZGARAY, ML ;
WEST, RR ;
OLMSTED, JB ;
CABRAL, F .
JOURNAL OF CELL BIOLOGY, 1994, 126 (04) :1017-1029
[4]   PHOSPHORYLATION OF SER(262) STRONGLY REDUCES BINDING OF TAU-PROTEIN TO MICROTUBULES - DISTINCTION BETWEEN PHF-LIKE IMMUNOREACTIVITY AND MICROTUBULE-BINDING [J].
BIERNAT, J ;
GUSTKE, N ;
DREWES, G ;
MANDELKOW, EM ;
MANDELKOW, E .
NEURON, 1993, 11 (01) :153-163
[5]  
BINDER LI, 1985, J CELL BIOL, V101, P1371, DOI 10.1083/jcb.101.4.1371
[6]   A SEQUENCE OF CYTOSKELETON CHANGES RELATED TO THE FORMATION OF NEUROFIBRILLARY TANGLES AND NEUROPIL THREADS [J].
BRAAK, E ;
BRAAK, H ;
MANDELKOW, EM .
ACTA NEUROPATHOLOGICA, 1994, 87 (06) :554-567
[7]   Neuronal polarity: Vectorial cytoplasmic flow precedes axon formation [J].
Bradke, F ;
Dotti, CG .
NEURON, 1997, 19 (06) :1175-1186
[8]   BIOCHEMICAL AND FUNCTIONAL DIVERSITY OF MICROTUBULE MOTORS IN THE NERVOUS-SYSTEM [J].
BRADY, ST ;
SPERRY, AO .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (05) :551-558
[9]   INTERACTION OF TAU WITH THE NEURAL PLASMA-MEMBRANE MEDIATED BY TAU AMINO-TERMINAL PROJECTION DOMAIN [J].
BRANDT, R ;
LEGER, J ;
LEE, G .
JOURNAL OF CELL BIOLOGY, 1995, 131 (05) :1327-1340