Nanomaterials, Inflammation, and Tissue Engineering

被引:90
作者
Padmanabhan, Jagannath [1 ,2 ]
Kyriakides, Themis R. [1 ,2 ,3 ]
机构
[1] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[2] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT USA
[3] Yale Univ, Dept Pathol, New Haven, CT USA
关键词
WALLED-CARBON-NANOTUBES; IN-VIVO; DRUG-DELIVERY; NANOFIBROUS SCAFFOLDS; PULMONARY INFLAMMATION; OXIDATIVE STRESS; NANOPARTICLES; BIOCOMPATIBILITY; NANOTOPOGRAPHY; MACROPHAGES;
D O I
10.1002/wnan.1320
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers, and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long-term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications. (C) 2014Wiley Periodicals, Inc.
引用
收藏
页码:355 / 370
页数:16
相关论文
共 115 条
  • [1] In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®
    Abshagen, K.
    Schrodi, I.
    Gerber, T.
    Vollmar, B.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 91A (02) : 557 - 566
  • [2] Ainslie KM, 2009, BIOLOGICAL INTERACTIONS ON MATERIALS SURFACES: UNDERSTANDING AND CONTROLLING PROTEIN, CELL, AND TISSUE RESPONSES, P355, DOI 10.1007/978-0-387-98161-1_18
  • [3] Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev.bioeng-071811-150124, 10.1146/annurev-bioeng-071811-150124]
  • [4] Foreign body reaction to biomaterials
    Anderson, James M.
    Rodriguez, Analiz
    Chang, David T.
    [J]. SEMINARS IN IMMUNOLOGY, 2008, 20 (02) : 86 - 100
  • [5] Biodegradable polymer matrix nanocomposites for tissue engineering: A review
    Armentano, I.
    Dottori, M.
    Fortunati, E.
    Mattioli, S.
    Kenny, J. M.
    [J]. POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) : 2126 - 2146
  • [6] Fabricated Micro-Nano Devices for In vivo and In vitro Biomedical Applications
    Barkam, Swetha
    Saraf, Shashank
    Seal, Sudipta
    [J]. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2013, 5 (06) : 544 - 568
  • [7] Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects
    Biswas, Abhijit
    Bayer, Ilker S.
    Biris, Alexandru S.
    Wang, Tao
    Dervishi, Enkeleda
    Faupel, Franz
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2012, 170 (1-2) : 2 - 27
  • [8] Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens
    Blank, Fabian
    Rothen-Rutishauser, Barbara
    Gehr, Peter
    [J]. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2007, 36 (06) : 669 - 677
  • [9] The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction
    Cao, Haoqing
    Mchugh, Kevin
    Chew, Sing Yian
    Anderson, James M.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 93A (03) : 1151 - 1159
  • [10] Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen
    Institute de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, México, D.F.
    不详
    [J]. Nano Lett., 2006, 8 (1609-1616): : 1609 - 1616