On Lorentzian Einstein affine hyperspheres

被引:2
|
作者
Hu, Zejun [1 ]
Li, Cece [2 ]
Xing, Cheng [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
关键词
Affine hyperspheres; Lorentzian affine metric; Einstein metric; Null frame; MAGID-RYAN CONJECTURE; HYPERSURFACES; SPHERES;
D O I
10.1016/j.geomphys.2022.104587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classification of affine hyperspheres with Einstein affine metric is still an interesting unsolved problem in equiaffine differential geometry, although several nontrivial examples are well known. As the first attempt, the first author and his coauthors recently solved the problem for four-dimensional locally strongly convex case. In this paper, as another attempt, we study the problem in the Lorentzian case. As the main result, we completely classify four-dimensional affine hyperspheres with Lorentzian Einstein affine metric and non-vanishing Pick invariant.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] The Einstein shear viscosity correction for non no-slip hyperspheres
    Slominski, Charles G.
    Kraynik, Andrew M.
    Brady, John F.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 430 : 302 - 304
  • [42] Improper affine hyperspheres with self-congruent center map
    Trabelsi, Houda
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 73 - 81
  • [43] Improper affine hyperspheres with self-congruent center map
    Houda Trabelsi
    Monatshefte für Mathematik, 2007, 152 : 73 - 81
  • [44] ON LORENTZIAN QUASI-EINSTEIN MANIFOLDS
    Shaikh, Absos Ali
    Kim, Young Ho
    Hui, Shyamal Kumar
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (04) : 669 - 689
  • [45] Locally conformally flat affine hyperspheres with parallel Ricci tensor
    Hu, Zejun
    Xing, Cheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [46] Lorentzian Affine Hypersurfaces with Parallel Cubic Form
    Zejun Hu
    Cece Li
    Haizhong Li
    Luc Vrancken
    Results in Mathematics, 2011, 59 : 577 - 620
  • [47] Strong marked isospectrality of affine Lorentzian groups
    Charette, V
    Drumm, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 66 (03) : 437 - 452
  • [48] Lorentzian affine hypersurfaces with an almost symplectic form
    Szancer, Michal
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 119 : 171 - 186
  • [49] Lorentzian Affine Hypersurfaces with Parallel Cubic Form
    Hu, Zejun
    Li, Cece
    Li, Haizhong
    Luc Vrancken
    RESULTS IN MATHEMATICS, 2011, 59 (3-4) : 577 - 620
  • [50] Domains of discontinuity of Lorentzian affine group actions
    Kapovich, Michael
    Leeb, Bernhard
    GEOMETRIAE DEDICATA, 2024, 218 (04)