Modelling the impact of flow-driven turbine power plants on great wind-driven ocean currents and the assessment of their energy potential

被引:32
作者
Barnier, Bernard [1 ,2 ]
Domina, Anastasiia [1 ,3 ]
Gulev, Sergey [2 ]
Molines, Jean-Marc [1 ]
Maitre, Thierry [4 ]
Penduff, Thierry [1 ]
Le Sommer, Julien [1 ]
Brasseur, Pierre [1 ]
Brodeau, Laurent [5 ]
Colombo, Pedro [1 ]
机构
[1] Univ Grenoble Alpes, Ctr Natl Rech Sci, Inst Geosci Environm, CNRS UGA IRD G INP, Grenoble, France
[2] Russian Acad Sci, Shirshov Inst Oceanol, Moscow, Russia
[3] Univ Liverpool, Sch Environm Sci, Liverpool, Merseyside, England
[4] Lab Ecoulements Geophys & Ind, Grenoble, France
[5] Ocean Next, Grenoble, France
关键词
HYDROKINETIC ENERGY; KINETIC-ENERGY; GLOBAL OCEAN; FLORIDA; VARIABILITY; EXTRACTION; GENERATION; TRANSPORT;
D O I
10.1038/s41560-020-0580-2
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The persistence in the strength and direction of western boundary great ocean currents suggests that flow-driven turbines implemented in these currents have great potential for energy exploitation. However, technological developments in the design and installation of power-generating plants in the ocean are tied to our capacity to accurately identify the most favourable sites and provide practical assessments of the potentially recoverable energy. Here we use a global eddy-resolving ocean model to demonstrate that large ocean power plants may exert feedback on oceanic circulation that results in highly unpredictable changes in ocean currents. Regionally, these changes can drastically modify the path of the current. In extreme cases this corresponds to a decrease in the available power by more than 80% from initial expectations. Ocean currents offer a potential source of power, but identification of the best sites requires a detailed understanding of their variability. Barnier et al. undertake global eddy-resolving ocean modelling to gain insight into the feedback from ocean power plants on currents and the changes they can induce.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 47 条
[1]   A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents [J].
Akimoto, Hiromichi ;
Tanaka, Kenji ;
Uzawa, Kiyoshi .
RENEWABLE ENERGY, 2013, 57 :283-288
[2]   Interactions between the Somali Current eddies during the summer monsoon: insights from a numerical study [J].
Akuetevi, C. Q. C. ;
Barnier, B. ;
Verron, J. ;
Molines, J. -M. ;
Lecointre, A. .
OCEAN SCIENCE, 2016, 12 (01) :185-205
[3]   Generating electricity from the oceans [J].
Bahaj, AbuBakr S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (07) :3399-3416
[4]  
Barnier B, 2006, OCEAN DYNAM, V56, P377, DOI 10.1007/s10236-006-0090-1
[5]   Site selection of ocean current power generation from drifter measurements [J].
Chang, Yu-Chia ;
Chu, Peter C. ;
Tseng, Ruo-Shan .
RENEWABLE ENERGY, 2015, 80 :737-745
[6]   Kuroshio power plant development plan [J].
Chen, Falin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) :2655-2668
[7]   Assessment of renewable energy reserves in Taiwan [J].
Chen, Falin ;
Lu, Shyi-Min ;
Tseng, Kuo-Tung ;
Lee, Si-Chen ;
Wang, Eric .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) :2511-2528
[8]   Multi-scale ocean response to a large tidal stream turbine array [J].
De Dominicis, Michela ;
Murray, Rory O'Hara ;
Wolf, Judith .
RENEWABLE ENERGY, 2017, 114 :1160-1179
[9]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[10]   Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable [J].
Deshayes, J. ;
Treguier, A. -M. ;
Barnier, B. ;
Lecointre, A. ;
Le Sommer, J. ;
Molines, J. -M. ;
Penduff, T. ;
Bourdalle-Badie, R. ;
Drillet, Y. ;
Garric, G. ;
Benshila, R. ;
Madec, G. ;
Biastoch, A. ;
Boening, C. W. ;
Scheinert, M. ;
Coward, A. C. ;
Hirschi, J. J. -M. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) :3069-3073