Advances in artificial intelligence and deep learning systems in ICU-related acute kidney injury

被引:14
作者
Ozrazgat-Baslanti, Tezcan [1 ,3 ]
Loftus, Tyler J. [2 ,3 ]
Ren, Yuanfang [1 ,3 ]
Ruppert, Matthew M. [1 ,3 ]
Bihorac, Azra [1 ,3 ]
机构
[1] Univ Florida, Dept Med, Gainesville, FL 32610 USA
[2] Univ Florida, Dept Surg, Coll Med, Gainesville, FL 32610 USA
[3] Univ Florida, Precis & Intelligent Syst Med PrismaP, Gainesville, FL 32610 USA
基金
美国国家卫生研究院;
关键词
acute kidney injury; artificial intelligence; deep learning; intensive care unit; machine learning; PREDICTION MODEL; RISK; AKI; NOMOGRAM;
D O I
10.1097/MCC.0000000000000887
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Purpose of review Acute kidney injury (AKI) affects nearly 60% of all patients admitted to ICUs. Large volumes of clinical, monitoring and laboratory data produced in ICUs allow the application of artificial intelligence analytics. The purpose of this article is to assimilate and critically evaluate recently published literature regarding artificial intelligence applications for predicting, diagnosing and subphenotyping AKI among critically ill patients. Recent findings Among recent studies regarding artificial intelligence implementations for predicting, diagnosing and subphenotyping AKI among critically ill patients, there are many promising models, but few had external validation, clinical interpretability and high predictive performance. Deep learning techniques leveraging multimodal clinical data show great potential to provide continuous, accurate, early predictions of AKI risk, which could be implemented clinically to optimize preventive and early therapeutic management strategies. Use of consensus criteria, standard definitions and common data models could facilitate access to machine learning-ready data sets for external validation. The lack of interpretability, explainability, fairness and transparency of artificial intelligence models hinder their entrustment and clinical implementation; compliance with standardized reporting guidelines can mitigate these challenges.
引用
收藏
页码:560 / 572
页数:13
相关论文
共 52 条
[1]   Examining the Potential Impact of Race Multiplier Utilization in Estimated Glomerular Filtration Rate Calculation on African-American Care Outcomes [J].
Ahmed, Salman ;
Nutt, Cameron T. ;
Eneanya, Nwamaka D. ;
Reese, Peter P. ;
Sivashanker, Karthik ;
Morse, Michelle ;
Sequist, Thomas ;
Mendu, Mallika L. .
JOURNAL OF GENERAL INTERNAL MEDICINE, 2021, 36 (02) :464-471
[2]   A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients [J].
Alfieri, Francesca ;
Ancona, Andrea ;
Tripepi, Giovanni ;
Crosetto, Dario ;
Randazzo, Vincenzo ;
Paviglianiti, Annunziata ;
Pasero, Eros ;
Vecchi, Luigi ;
Cauda, Valentina ;
Fagugli, Riccardo Maria .
JOURNAL OF NEPHROLOGY, 2021, 34 (06) :1875-1886
[3]   An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles [J].
An, Shuo ;
Luo, Hongliang ;
Wang, Jiao ;
Gong, Zhitao ;
Tian, Ye ;
Liu, Xuanhui ;
Ma, Jun ;
Jiang, Rongcai .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (05)
[4]   Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy [J].
Bhatraju, Pavan K. ;
Zelnick, Leila R. ;
Herting, Jerald ;
Katz, Ronit ;
Mikacenic, Carmen ;
Kosamo, Susanna ;
Morrell, Eric D. ;
Robinson-Cohen, Cassianne ;
Calfee, Carolyn S. ;
Christie, Jason D. ;
Liu, Kathleen D. ;
Matthay, Michael A. ;
Hahn, William O. ;
Dmyterko, Victoria ;
Slivinski, Natalie S. J. ;
Russell, Jim A. ;
Walley, Keith R. ;
Christiani, David C. ;
Liles, W. Conrad ;
Himmelfarb, Jonathan ;
Wurfel, Mark M. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (07) :863-872
[5]   Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury [J].
Chaudhary, Kumardeep ;
Vaid, Akhil ;
Duffy, Aine ;
Paranjpe, Ishan ;
Jaladanki, Suraj ;
Paranjpe, Manish ;
Johnson, Kipp ;
Gokhale, Avantee ;
Pattharanitima, Pattharawin ;
Chauhan, Kinsuk ;
O'Hagan, Ross ;
Van Vleck, Tielman ;
Coca, Steven G. ;
Cooper, Richard ;
Glicksberg, Benjamin ;
Bottinger, Erwin P. ;
Chan, Lili ;
Nadkarni, Girish N. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 15 (11) :1557-1565
[6]   Predicting Acute Kidney Injury After Cardiac Surgery Using a Simpler Model [J].
Coulson, Tim ;
Bailey, Michael ;
Pilcher, Dave ;
Reid, Christopher M. ;
Seevanayagam, Siven ;
Williams-Spence, Jenni ;
Bellomo, Rinaldo .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2021, 35 (03) :866-873
[7]   Diagnostic work-up and specific causes of acute kidney injury [J].
Darmon, Michael ;
Ostermann, Marlies ;
Cerda, Jorge ;
Dimopoulos, Meletios A. ;
Forni, Lui ;
Hoste, Eric ;
Legrand, Matthieu ;
Lerolle, Nicolas ;
Rondeau, Eric ;
Schneider, Antoine ;
Souweine, Bertrand ;
Schetz, Miet .
INTENSIVE CARE MEDICINE, 2017, 43 (06) :829-840
[8]   Nomogram to predict the risk of septic acute kidney injury in the first 24 h of admission: an analysis of intensive care unit data [J].
Deng, Fuxing ;
Peng, Milin ;
Li, Jing ;
Chen, Yana ;
Zhang, Buyao ;
Zhao, Shuangping .
RENAL FAILURE, 2020, 42 (01) :428-436
[9]   Clinical Implications of Removing Race From Estimates of Kidney Function [J].
Diao, James A. ;
Wu, Gloria J. ;
Taylor, Herman A. ;
Tucker, John K. ;
Powe, Neil R. ;
Kohane, Isaac S. ;
Manrai, Arjun K. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 325 (02) :184-+
[10]   A new prediction model for acute kidney injury in patients with sepsis [J].
Fan, Chenyu ;
Ding, Xiu ;
Song, Yanli .
ANNALS OF PALLIATIVE MEDICINE, 2021, 10 (02) :1772-1778