Orthogonal spline collocation method for the two-dimensional time fractional mobile-immobile equation

被引:4
作者
Qiao, Leijie [2 ]
Xu, Da [3 ]
Wang, Zhibo [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Changsha Univ Sci & Technol, Coll Math Stat, Changsha 410114, Hunan, Peoples R China
[3] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term fractional mobile-immobile equation; Orthogonal spline collocation method; Stability; Convergence; Numerical examples; INTEGRODIFFERENTIAL EQUATION; EVOLUTION EQUATION; SCHEME; APPROXIMATIONS;
D O I
10.1007/s12190-021-01661-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to find the numerical solution of two-dimensional multi-term time fractional mobile-immobile equation. The proposed technique is based on the arbitrary-order orthogonal spline collocation method for the spatial discretization, the L1 approximation for the Caputo fractional derivative, and a second-order backward differentiation formula in time. The stability and convergence are proved in detail. Then, the convergence analysis is validated by a number of numerical experiments.
引用
收藏
页码:3199 / 3217
页数:19
相关论文
共 34 条
[1]   Numerical Solution of a Kind of Fractional Parabolic Equations via Two Difference Schemes [J].
Atangana, Abdon ;
Baleanu, Dumitru .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[2]   Second order difference schemes for time-fractional KdV-Burgers' equation with initial singularity [J].
Cen, Dakang ;
Wang, Zhibo ;
Mo, Yan .
APPLIED MATHEMATICS LETTERS, 2021, 112
[3]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[4]   Algorithms for almost block diagonal linear systems [J].
Fairweather, G ;
Gladwell, A .
SIAM REVIEW, 2004, 46 (01) :49-58
[5]  
Fairweather G., 1993, Num. Meth. for PDE's, V9, P191, DOI DOI 10.1002/NUM.1690090207
[6]   The Galerkin finite element method for a multi-term time-fractional diffusion equation [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Liu, Yikan ;
Zhou, Zhi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :825-843
[7]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[8]   A RBF meshless approach for modeling a fractal mobile/immobile transport model [J].
Liu, Q. ;
Liu, F. ;
Turner, I. ;
Anh, V. ;
Gu, Y. T. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :336-347
[9]   A Crank-Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation [J].
Liu, Zhengguang ;
Li, Xiaoli .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 56 (1-2) :391-410
[10]   Second-Order and Nonuniform Time-Stepping Schemes for Time Fractional Evolution Equations with Time-Space Dependent Coefficients [J].
Lyu, Pin ;
Vong, Seakweng .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)