Observation of topological phase with critical localization in a quasi-periodic lattice

被引:52
作者
Xiao, Teng [1 ,2 ]
Xie, Dizhou [1 ,2 ]
Dong, Zhaoli [1 ,2 ]
Chen, Tao [1 ,2 ]
Yi, Wei [3 ,4 ]
Yan, Bo [1 ,2 ,5 ]
机构
[1] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Zhejiang Prov Key Lab Quantum Technol & Device, Phys Dept, Hangzhou 310027, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Momentum lattice; Quantum simulation; Critical localization; Topological phase; ANDERSON LOCALIZATION;
D O I
10.1016/j.scib.2021.07.025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Disorder and localization have dramatic influence on the topological properties of a quantum system. While strong disorder can close the band gap thus depriving topological materials of topological features, disorder may also induce topology from trivial band structures, wherein topological invariants are shared by completely localized states. Here we experimentally investigate a fundamentally distinct scenario where topology is identified in a critically localized regime, with eigenstates neither fully extended nor completely localized. Adopting the technique of momentum-lattice engineering for ultracold atoms, we implement a one-dimensional, generalized Aubry-Andre model with both diagonal and off-diagonal quasi-periodic disorder in momentum space, and characterize its localization and topological properties through dynamic observables. We then demonstrate the impact of interactions on the critically localized topological state, as a first experimental endeavor toward the clarification of many-body critical phase, the critical analogue of the many-body localized state. (c) 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:2175 / 2180
页数:6
相关论文
共 49 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Topological Insulators in Amorphous Systems [J].
Agarwala, Adhip ;
Shenoy, Vijay B. .
PHYSICAL REVIEW LETTERS, 2017, 118 (23)
[3]   Quantum Criticality of Quasi-One-Dimensional Topological Anderson Insulators [J].
Altland, Alexander ;
Bagrets, Dmitry ;
Fritz, Lars ;
Kamenev, Alex ;
Schmiedt, Hanno .
PHYSICAL REVIEW LETTERS, 2014, 112 (20)
[4]   Engineering a Flux-Dependent Mobility Edge in Disordered Zigzag Chains [J].
An, Fangzhao Alex ;
Meier, Eric J. ;
Gadway, Bryce .
PHYSICAL REVIEW X, 2018, 8 (03)
[5]   Correlated Dynamics in a Synthetic Lattice of Momentum States [J].
An, Fangzhao Alex ;
Meier, Eric J. ;
Ang'ong'a, Jackson ;
Gadway, Bryce .
PHYSICAL REVIEW LETTERS, 2018, 120 (04)
[6]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[7]   Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition [J].
Bertrand, Corentin L. ;
Garcia-Garcia, Antonio M. .
PHYSICAL REVIEW B, 2016, 94 (14)
[8]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[9]   Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons [J].
Cardano, Filippo ;
D'Errico, Alessio ;
Dauphin, Alexandre ;
Maffei, Maria ;
Piccirillo, Bruno ;
de Lisio, Corrado ;
De Filippis, Giulio ;
Cataudella, Vittorio ;
Santamato, Enrico ;
Marrucci, Lorenzo ;
Lewenstein, Maciej ;
Massignan, Pietro .
NATURE COMMUNICATIONS, 2017, 8
[10]   Fate of topological states in incommensurate generalized Aubry-Andre models [J].
Cestari, J. C. C. ;
Foerster, A. ;
Gusmao, M. A. .
PHYSICAL REVIEW B, 2016, 93 (20)