Examination of the calorimetric spectrum to determine the neutrino mass in low-energy electron capture decay

被引:28
作者
Robertson, R. G. H. [1 ,2 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW C | 2015年 / 91卷 / 03期
关键词
CRYOGENIC DETECTOR; HO-163; SPECTRUM; LIMIT; PHOTOIONIZATION;
D O I
10.1103/PhysRevC.91.035504
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Background: The standard kinematic method for determining neutrino mass from the beta decay of tritium or other isotope is to measure the shape of the electron spectrum near the endpoint. A similar distortion of the "visible energy" remaining after electron capture is caused by neutrino mass. There has been a resurgence of interest in using this method with Ho-163, driven by technological advances in microcalorimetry. Recent theoretical analyses offer reassurance that there are no significant theoretical uncertainties. Purpose: The theoretical analyses consider only single vacancy states in the daughter Dy-163 atom. It is necessary to consider configurations with more than one vacancy that can be populated owing to the change in nuclear charge. Method: The shakeup and shake-off theory of Carlson and Nestor is used as a basis for estimating the population of double-vacancy states. Results: A spectrum of satellites associated with each primary vacancy created by electron capture is presented. Conclusions: The theory of the calorimetric spectrum is more complicated than has been described heretofore. There are numerous shakeup and shake-off satellites present across the spectrum, and some may be very near the endpoint. The spectrum shape is presently not understood well enough to permit a sensitive determination of the neutrino mass in this way.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Measurement of the rate of νe+d →p+p+e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory -: art. no. 071301 [J].
Ahmad, QR ;
Allen, RC ;
Andersen, TC ;
Anglin, JD ;
Bühler, G ;
Barton, JC ;
Beier, EW ;
Bercovitch, M ;
Bigu, J ;
Biller, S ;
Black, RA ;
Blevis, I ;
Boardman, RJ ;
Boger, J ;
Bonvin, E ;
Boulay, MG ;
Bowler, MG ;
Bowles, TJ ;
Brice, SJ ;
Browne, MC ;
Bullard, TV ;
Burritt, TH ;
Cameron, K ;
Cameron, J ;
Chan, YD ;
Chen, M ;
Chen, HH ;
Chen, X ;
Chon, MC ;
Cleveland, BT ;
Clifford, ETH ;
Cowan, JHM ;
Cowen, DF ;
Cox, GA ;
Dai, Y ;
Dai, X ;
Dalnoki-Veress, F ;
Davidson, WF ;
Doe, PJ ;
Doucas, G ;
Dragowsky, MR ;
Duba, CA ;
Duncan, FA ;
Dunmore, J ;
Earle, ED ;
Elliott, SR ;
Evans, HC ;
Ewan, GT ;
Farine, J ;
Fergani, H .
PHYSICAL REVIEW LETTERS, 2001, 87 (07) :71301-1
[2]  
Alpert B., ARXIV14125060PHYSICS
[3]   A LIMIT ON THE MASS OF THE ELECTRON NEUTRINO - THE CASE OF HO-163 [J].
ANDERSEN, JU ;
BEYER, GJ ;
CHARPAK, G ;
DERUJULA, A ;
ELBEK, B ;
GUSTAFSSON, HA ;
HANSEN, PG ;
JONSON, B ;
KNUDSEN, P ;
LAEGSGAARD, E ;
PEDERSEN, J ;
RAVN, HL .
PHYSICS LETTERS B, 1982, 113 (01) :72-76
[4]   MARE, Microcalorimeter Arrays for a Rhenium Experiment: A detector overview [J].
Andreotti, E. ;
Arnaboldi, C. ;
de Bernardis, P. ;
Beyer, J. ;
Brofferio, C. ;
Calvo, M. ;
Capelli, S. ;
Cremonesi, O. ;
Enss, C. ;
Fiorini, E. ;
Fleischmann, A. ;
Foggetta, L. ;
Galeazzi, M. ;
Gallinaro, G. ;
Gastaldo, L. ;
Gatti, F. ;
Giuliani, A. ;
Gorla, P. ;
Heeger, K. ;
Irwin, K. D. ;
Kelley, R. ;
Kilbourne, C. A. ;
Margesin, B. ;
Maruyama, R. ;
Masi, S. ;
McCammon, D. ;
Monfardini, A. ;
Nones, C. ;
Nucciotti, A. ;
Pavan, M. ;
Pedretti, M. ;
Pergolesi, D. ;
Pessina, G. ;
Petcov, S. ;
Porter, F. S. ;
Prest, M. ;
Previtali, E. ;
Repetto, P. ;
Ribeiro-Gomez, M. ;
Sangiorgio, S. ;
Schaeffer, D. ;
Sisti, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 572 (01) :208-210
[5]   Upper limit on the electron antineutrino mass from the Troitsk experiment [J].
Aseev, V. N. ;
Belesev, A. I. ;
Berlev, A. I. ;
Geraskin, E. V. ;
Golubev, A. A. ;
Likhovid, N. A. ;
Lobashev, V. M. ;
Nozik, A. A. ;
Pantuev, V. S. ;
Parfenov, V. I. ;
Skasyrskaya, A. K. ;
Tkachov, F. V. ;
Zadorozhny, S. V. .
PHYSICAL REVIEW D, 2011, 84 (11)
[6]   CALCULATION OF ELECTRON SHAKE-OFF PROBABILITIES AS RESULT OF X-RAY PHOTOIONIZATION OF RARE-GASES [J].
CARLSON, TA ;
NESTOR, CW .
PHYSICAL REVIEW A, 1973, 8 (06) :2887-2894
[7]  
De Rujula A., ARXIV13054857HEPPH
[8]   CALORIMETRIC MEASUREMENTS OF HO-163 DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS [J].
DERUJULA, A ;
LUSIGNOLI, M .
PHYSICS LETTERS B, 1982, 118 (4-6) :429-434
[9]   A NEW WAY TO MEASURE NEUTRINO MASSES [J].
DERUJULA, A .
NUCLEAR PHYSICS B, 1981, 188 (03) :414-458
[10]   Current Direct Neutrino Mass Experiments [J].
Drexlin, G. ;
Hannen, V. ;
Mertens, S. ;
Weinheimer, C. .
ADVANCES IN HIGH ENERGY PHYSICS, 2013, 2013