Strichartz estimates in Wiener amalgam spaces for the Schrodinger equation

被引:24
作者
Cordero, Elena [1 ]
Nicola, Fabio [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Schrodinger equation; Strichartz estimates; dispersive estimates; Wiener amalgam spaces;
D O I
10.1002/mana.200610585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the dispersive properties of the Schrodinger equation. Precisely, we look for estimates which give a control of the local regularity and decay at infinity separately. The Banach spaces that allow such a treatment are the Wiener amalgam spaces, and Strichartz-type estimates are proved in this framework. These estimates improve some of the classical ones in the case of large time. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 20 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
[Anonymous], 2006, J FUNCT ANAL
[3]  
BENYI A, 2006, UNIMODULAR FOURIER M
[4]   Some remarks on the Schrodinger equation with a potential in LrtLsx [J].
D'Ancona, P ;
Pierfelice, V ;
Visciglia, N .
MATHEMATISCHE ANNALEN, 2005, 333 (02) :271-290
[5]  
Feichtinger H.G., 1981, Internat. Ser. Numer. Math., V60, P153
[6]   GENERALIZED AMALGAMS, WITH APPLICATIONS TO FOURIER-TRANSFORM [J].
FEICHTINGER, HG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03) :395-409
[7]  
Feichtinger HG, 1998, APPL NUM HARM ANAL, P123
[8]  
FEICHTINGER HG, 1983, C MATH SOC JANOS BOL, V35, P509
[9]  
Folland G. B., 1989, HARMONIC ANAL PHASE
[10]   AMALGAMS OF LP AND LQ [J].
FOURNIER, JJF ;
STEWART, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 13 (01) :1-21